首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
DNA sequence variations of chalcone synthase (Chs) and Apetala3 gene promoters from 22 cruciferous plant species were analyzed to identify putative conserved regulatory elements. Our comparative approach confirmed the existence of numerous conserved sequences which may act as regulatory elements in both investigated promoters. To confirm the correct identification of a well-conserved UV-light-responsive promoter region, a subset of Chs promoter fragments were tested in Arabidopsis thaliana protoplasts. All promoters displayed similar light responsivenesses, indicating the general functional relevance of the conserved regulatory element. In addition to known regulatory elements, other highly conserved regions were detected which are likely to be of functional importance. Phylogenetic trees based on DNA sequences from both promoters (gene trees) were compared with the hypothesized phylogenetic relationships (species trees) of these taxa. The data derived from both promoter sequences were congruent with the phylogenies obtained from coding regions of other nuclear genes and from chloroplast DNA sequences. This indicates that promoter sequence evolution generally is reflective of species phylogeny. Our study also demonstrates the great value of comparative genomics and phylogenetics as a basis for functional analysis of promoter action and gene regulation.  相似文献   

3.
4.
The mammalian proglucagon gene is expressed in pancreatic islet A-cells, intestinal L-cells, and select neurons of the brain, where posttranslational processing results in the liberation of a unique profile of peptides. Despite the importance of proglucagon-derived peptides in human biology, little is known about the regulation of the human gene, as the rat gene has been the preferred model for understanding the regulation of proglucagon gene expression. Previously, we have shown that although the immediate promoter region of the rat proglucagon gene is sufficient for expression in pancreatic islet cells, the homologous human proglucagon promoter sequences are not sufficient. We have now used a comparative genomic approach to identify noncoding sequences near the human proglucagon gene that are conserved among mammals, and thus potentially are regulatory sequences. Our alignments identified three evolutionarily conserved noncoding regions (ECR), one is the immediate promoter region (ECR1), the second is about 5 kb 5' to the mRNA start site (ECR2), and the third is near the 3' end of the first intron (ECR3). Our in vitro transient transfection assays with reporter gene constructs that include the human ECR3 support expression in rodent islet cell lines. Complementary studies with transgenic mice possessing a reporter gene regulated by a human proglucagon gene promoter-intron 1 (including ECR3) sequences express the reporter gene in the pancreas, as well as the intestine and selected neurons. These studies suggest that conserved sequences within intron 1 of the human proglucagon gene are important for expression in the pancreas.  相似文献   

5.
6.
7.
The identification of noncoding functional elements within vertebrate genomes, such as those that regulate gene expression, is a major challenge. Comparisons of orthologous sequences from multiple species are effective at detecting highly conserved regions and can reveal potential regulatory sequences. The GDF6 gene controls developmental patterning of skeletal joints and is associated with numerous, distant cis-acting regulatory elements. Using sequence data from 14 vertebrate species, we performed novel multispecies comparative analyses to detect highly conserved sequences flanking GDF6. The complementary tools WebMCS and ExactPlus identified a series of multispecies conserved sequences (MCSs). Of particular interest are MCSs within noncoding regions previously shown to contain GDF6 regulatory elements. A previously reported conserved sequence at -64 kb was also detected by both WebMCS and ExactPlus. Analysis of LacZ-reporter transgenic mice revealed that a 440-bp segment from this region contains an enhancer for Gdf6 expression in developing proximal limb joints. Several other MCSs represent candidate GDF6 regulatory elements; many of these are not conserved in fish or frog, but are strongly conserved in mammals.  相似文献   

8.
A challenge for mammalian genetics is the recognition of critical regulatory regions in primary gene sequence. One approach to this problem is to compare sequences from genes exhibiting highly conserved expression patterns in disparate organisms. Previous transgenic and transfection analyses defined conserved regulatory domains in the mouse and human adenosine deaminase (ADA) genes. We have thus attempted to identify regions with comparable similarity levels potentially indicative of critical ADA regulatory regions. On the basis of aligned regions of the mouse and human ADA gene, using a 24-bp window, we find that similarity overall (67.7%) and throughout the noncoding sequences (67.1%) is markedly lower than that of the coding regions (81%). This low overall similarity facilitated recognition of more highly conserved regions. In addition to the highly conserved exons, ten noncoding regions >100 bp in length displayed >70% sequence similarity. Most of these contained numerous 24-bp windows with much higher levels of similarity. A number of these regions, including the promoter and the thymic enhancer, were more similar than several exons. A third block, located near the thymic enhancer but just outside of a minimally defined locus control region, exhibited stronger similarity than the promoter or thymic enhancer. In contrast, only fragmentary similarity was exhibited in a region that harbors a strong duodenal enhancer in the human gene. These studies show that comparative sequence analysis can be a powerful tool for identifying conserved regulatory domains, but that some conserved sequences may not be detected by certain functional analyses as transgenic mice. Received: 27 March 1998 / Accepted: 22 September 1998  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Several cis-regulatory DNA elements are present in the 5' upstream regulatory region of the enkephalin gene (ENK) promoter. To determine their role in conferring organ-specificity of ENK expression in mice and to circumvent the position effects from random gene insertion that are known to often frustrate such analysis in transgenic mice, we used a Cre-mediated gene knock-in strategy to target reporter constructs to a "safe haven" loxP-tagged locus in the hypoxanthine phosphoribosyltransferase (HPRT) gene. Here we report reliable and reproducible reporter gene expression under the control of the 5' upstream regulatory region of the mouse ENK gene in gene-modified mice using this Cre-mediated knock-in strategy. Comparison of two 5'ENK regulatory regions (one with and the other without known cis-regulatory DNA elements) in the resulting adult mice showed that conserved far-upstream cis-regulatory DNA elements are dispensable for correct organ-specific gene expression. Thus the proximal 1.4 kb of the murine ENK promoter region is sufficient for organ-specificity of ENK gene expression when targeted to a safe-haven genomic locus. These results suggest that conservation of the far-upstream DNA elements serves more subtle roles, such as the developmental or cell-specific expression of the ENK gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号