首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Cell hydration changes critically affect liver metabolism and gene expression. In the course of gene expression studies using nylon cDNA-arrays we found that hyperosmolarity (405 mosmol/l) suppressed the betaine-homocysteine methyltransferase (Bhmt) mRNA expression in H4IIE rat hepatoma cells. This was confirmed by Northern blot and real-time quantitative RT-PCR analysis, which in addition unraveled a pronounced induction of Bhmt mRNA expression by hypoosmotic (205 mosmol/l) swelling. Osmotic regulation of Bhmt mRNA expression was largely paralleled at the levels of Bhmt protein and enzymatic activity. Like hyperosmotic NaCl, hyperosmotic raffinose but not hyperosmotic urea suppressed Bhmt mRNA expression, suggesting that cell shrinkage rather than increased ionic strength or hyperosmolarity per se is the trigger. Hypoosmolarity increased the expression of a reporter gene driven by the entire human BHMT promoter, whereas destabilization of BHMT mRNA was observed under hyperosmotic conditions. Osmosensitivity of Bhmt mRNA expression was impaired by inhibitors of tyrosine kinases and cyclic nucleotide-dependent kinases. The osmotic regulation of BHMT may be part of a cell volume-regulatory response and additionally lead to metabolic alterations that depend on the availability of betaine-derived methyl groups.  相似文献   

3.
BACKGROUND/AIMS: Proteasome inhibitors such as MG-132 are considered as potential therapeutical tools in different clinical settings. The dual specificity MAP-kinase phosphatase MKP-1 plays a role in balancing signals mediating cell death or survival. Here the effect of cell hydration on MG-132-induced MKP-1 expression was investigated in H4IIE rat hepatoma cells. RESULTS: Hyperosmolarity (405mosmol/l) increased MKP-1 expression by MG-132, which was accompanied by an induction of c-Fos, c-Jun, cJun Ser73 phosphorylation, and AP-1 DNA binding. MKP-1 induction by MG-132 plus hyperosmolarity was sensitive to inhibition of p38(MAPK) and c-Jun-N-terminal kinases (JNKs) but not extracellular signal-regulated kinases Erk-1/Erk-2, and was accompanied by a decline of MAP-kinase activities. Although hyperosmolarity increased overall protein ubiquitination in presence of MG-132, ubiquitination of MKP-1 was found under normo-, but not hyperosmotic conditions. Hyperosmolarity also enabled MG-132 to induce poly-ADP-ribose polymerase (PARP) cleavage which was sensitive to inhibition of p38(MAPK) and JNKs but not Erk-1/Erk-2. PARP cleavage and caspase-3 activation in H4IIE cells treated with hyperosmolarity plus MG-132 was further increased by vanadate, consistent with a contribution of MKP-1 to counterbalance proapoptotic MAP-kinase signals. CONCLUSION: The findings suggest that among other factors cell hydration critically determines the cellular response to proteasome inhibitors.  相似文献   

4.
5.
Glycogen synthase was isolated from rat H4IIE hepatoma cells by the use of specific antibodies. Immunoprecipitates from cells grown in the presence of [35S]methionine contained two 35S-labeled polypeptides, designated GS1 and GS2, separable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling of both species was half-maximal after 3 h and remained constant up to 48 h. When cells were incubated with [32P]-phosphate, 32P was incorporated into both species with similar kinetics, half-maximal labeling occurring after 2-3 h. The steady-state ratio 32P/35S was significantly higher for the lower mobility GS2 polypeptide. Pulse-chase experiments showed that the two subunits followed similar kinetics with respect to 35S-labeling. However, the turnover of 32P on the GS2 subunit was significantly faster (t1/2 approximately 30 min) than that on the GS1 subunit (t1/2 approximately 2 h). We suggest that the two polypeptides represent different phosphorylation states of the glycogen synthase subunit and are rapidly interconverted.  相似文献   

6.
We investigated the genotoxicity of middle distillate jet fuel, Jet Propulsion 8 (JP-8), on H4IIE rat hepatoma cells in vitro. DNA damage was evaluated using the comet (single cell gel electrophoresis) assay. Cells were exposed for 4h to JP-8 (solubilized in ethanol (EtOH) at 0.1% (v/v)) to concentrations ranging from 1 to 20microg/ml. Exposure to JP-8 resulted in an overall increase in mean comet tail moments ranging from 0.74+/-0.065 (0.1% EtOH control) to 3.13+/-0.018,4.36+/-0.32,5.40+/-0.29,7.70+/-0.52 and 11.23+/-0.77 for JP-8 concentrations 3, 5, 10, 15 and 20microg/ml, respectively. Addition of DNA repair inhibitors hydroxyurea (HU) and cytosine arabinoside (Ara-C) to cell culture with JP-8 resulted in accumulation of DNA damage strand breaks and increase in comet tail length. Inclusion of 4mM HU and 40microM Ara-C with 3, 5, 10 and 20microg/ml JP-8 concentrations resulted in increased mean tail moments to 5.94+/-0.43,10.12+/-0.72,17.03+/-0.96,and29.25+/-1.55. JP-8, in the concentrations used in this study, did not result in cytotoxicity or significant apoptosis, as measured using the terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-X nick end labeling (TUNEL) assay. These results demonstrate that relevant exposures to JP-8 result in DNA damage to H4IIE cells, and suggest that DNA repair is involved in mitigating these effects.  相似文献   

7.
The influence of anisoosmolarity on NF-kappaB binding activity was studied in H4IIE rat hepatoma cells. Hypoosmolarity induced a sustained NF-kappaB binding activity whereas the hyperosmotic NF-kappaB response was only minor. Hypoosmotic NF-kappaB activation was accompanied by degradation of the inhibitory IkappaB-alpha. Protein kinase C, PI(3)-kinase, reactive oxygen intermediates and the proteasome apparently participate in mediating the hypoosmotic effect on NF-kappaB. Hypoosmolarity plus PMA induced, amplified and prolonged IkappaB-alpha degradation and NF-kappaB binding activity. Transforming growth factor beta-induced apoptosis was diminished by hypoosmolarity. However, this anti-apoptotic effect was probably not related to NF-kappaB activation.  相似文献   

8.
Biochemical and immunochemical studies were undertaken to quantify the effects of cyclic AMP on cyclic AMP-dependent protein kinase subunit levels in nuclei of H4IIE hepatoma cells. Dibutyryl cyclic AMP (10 microM) caused a significant biphasic (10 and 120 min after stimulation) increase in total nuclear protein kinase activity. The increase observed 10 min after dibutyryl cyclic AMP stimulation was primarily due to an approx. 3-fold increase of catalytic (C) subunit activity, whereas the change observed 120 min after stimulation consisted of an increase in both C subunit and cyclic AMP-independent protein kinase activities. Analysis of nuclear protein extracts by photoaffinity labelling with 8-azido cyclic [32P]AMP identified only the type II regulatory subunit (RII), but not the type I regulatory subunit (RI). Analysis of nuclear RII variants by two-dimensional gel electrophoresis demonstrated that dibutyryl cyclic AMP caused the appearance of two RII variant forms which were not present in the nuclei of unstimulated cells. Using affinity-purified polyclonal antibodies and immunoblotting procedures, we identified an approx. 2-fold increase in the RII and C subunits in nuclear extracts of dibutyryl cyclic AMP-treated hepatoma cells. Finally, the RI, RII and C subunits were quantified by an e.l.i.s.a. which indicated that dibutyryl cyclic AMP increased nuclear RII and C subunits levels biphasically, reaching peak values 10 and 120 min after the initial stimulation. Nuclear RI subunit levels were not affected. These results provide qualitative as well as quantitative evidence for a modulation by cyclic AMP of the nuclear RII and C subunit levels in rat H4IIE hepatoma cells, and indicate a relatively rapid but temporarily limited dibutyryl cyclic AMP-induced translocation of the RII and C subunits to nuclear sites.  相似文献   

9.
Glutathione (GSH) is transported into renal mitochondria by the dicarboxylate (DIC; Slc25a10) and 2-oxoglutarate carriers (OGC; Slc25a11). To determine whether these carriers function similarly in liver mitochondria, we assessed the effect of competition with specific substrates or inhibitors on GSH uptake in isolated rat liver mitochondria. GSH uptake was uniphasic, independent of ATP hydrolysis, and exhibited Km and Vmax values of 4.08 mM and 3.06 nmol/min per mg protein, respectively. Incubation with butylmalonate and phenylsuccinate inhibited GSH uptake by 45-50%, although the individual inhibitors had no effect, suggesting in rat liver mitochondria, the DIC and OGC are only partially responsible for GSH uptake. H4IIE cells, a rat hepatoma cell line, were stably transfected with the cDNA for the OGC, and exhibited increased uptake of GSH and 2-oxoglutarate and were protected from cytotoxicity induced by H2O2, methyl vinyl ketone, or cisplatin, demonstrating the protective function of increased mitochondrial GSH transport in the liver.  相似文献   

10.
A sensitive RIA was used to examine regulation of IGFBP-1 in H4IIE rat hepatoma cells. IGFBP-1 was stimulated up to tenfold by dexamethasone and corticosterone, and this stimulation was abolished by RU486. The effect of dexamethasone increased with time in culture. Phorbol 12-myristate 13-acetate (PMA) stimulated IGFBP-1 up to fourfold with a maximal effect in short-term culture. Dexamethasone and PMA were additive in stimulating IGFBP-1. Under basal conditions IGFBP-1 production was linearly related to cell density: however, stimulation by dexamethasone was greatest in confluent cells, and PMA had a greater effect in sparse cultures. Insulin inhibited IGFBP-1 up to 80%, and this effect diminished with time in culture but was unaffected by cell density. Dexamethasone was stimulatory in the presence of a maximal inhibitory concentration of insulin, and insulin was inhibitory in the presence of maximal dexamethasone from 3–48 h in culture, regardless of cell density. PMA abolished the inhibitory action of insulin on IGFBP-1 secretion and mRNA expression during incubation periods of less than 4 h and not during longer incubations. PMA did not influence the stability of IGFBP-1 mRNA. We conclude that, in rat H4IIE cells, dexamethasone and PMA stimulate IGFBP-1 by independent mechanisms and speculate that when protein kinase C is activated the inhibitory action of insulin is blocked. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Substrate regulation of System A transport activity in rat H4 hepatoma cells is described. The uptake of several amino acids was tested in the presence of system-specific inhibitors. System A activity was increased in a RNA- and protein synthesis-dependent manner by amino acid deprivation of the cells (adaptive regulation), whereas transport by Systems ASC, N, y+, and L was unaffected. Unlike human fibroblasts, the H4 cells did not require serum to exhibit the depression of System A. At cell densities between 88 X 10(3) and 180 X 10(3) cells/cm2, the degree of adaptive regulation was inversely related to cell density. Both transport of AIB and adaptive regulation of System A were nearly abolished if either K+ or Li+ was substituted for Na+ in the medium. The presence of cycloheximide or tunicamycin blocked further increases in starvation-induced activity within 1 hr of addition, suggesting the involvement of a plasma membrane glycoprotein. In contrast, if the medium was supplemented with actinomycin after the stimulation of System A had begun, the activity continued to increase for an additional 2 hr before being slowed by the inhibitor. The contributions of trans-inhibition and repression to the amino acid-induced decay of System A activity were estimated for several representative amino acids. In general, the System A activity in normal rat hepatocytes was much less sensitive to trans-inhibition than the corresponding activity in H4 hepatoma cells. The half-life values for the amino acid-dependent decay of System A ranged from 0.5 to 2.0 hr.  相似文献   

12.
Rat hepatoma cells become refractory to the induction of heat shock proteins and highly resistant to severe hyperthermia when incubated in Ca2+-free medium. The Ca2+-depleted cells synthesize polypeptides identified as the glucose-regulated proteins, but these proteins do not appear to be directly involved in the inhibition of the heat shock response. The results suggest that a Ca2+-dependent metabolic process is involved in the generation of the heat shock signal and/or mediates a step in the subsequent cascade of events that leads to the induction of heat shock protein synthesis and cell death.  相似文献   

13.
14.
15.
16.
17.
18.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

19.
20.
Etoposide is a potent anticancer agent that is used to treat various tumors. We have investigated the dose-dependent effect of etoposide on apoptosis using chronic myeloid leukemia K562 cells treated with low (5 M) or high (100 M) concentrations of the drug. At a low concentration, etoposide induced little apoptosis at 24 h, while about 20% of the cells showed apoptosis morphologically at a high concentration. Processing of caspase-3 was slightly detected from 12 h and became obvious at 24 h with 100 M etoposide. Caspase-3-like protease activity was detected at 24 h with a high concentration. Moreover, these changes were accompanied by cleavage of poly ADP ribose polymerase (PARP). Changes of the mRNA levels of most apoptosis-regulating genes were not prominent at both concentrations, except for the rapid induction of c-IAP-2/HIAP-1 and the down-regulation of Bcl-XL by 100 M etoposide. The downregulation of Bcl-XL protein occurred from 6 h, while Bax protein conversely showed a slight increase from 6 h. Taken together, the present findings show that the dose-dependent apoptotic effect of etoposide is based on a change in the balance between Bcl-XL and Bax, which precedes the activation of caspase-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号