首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of 14C in the various glucose residues of maltotriose was studied as a function of time of photosynthesis of isolated chloroplasts of spinach (Spinacia oleracea L.) using 14CO2. The distribution of label showed that the reducing-end glucose residue was labeled first and the label subsequently distributed to the second and third glucose residues at approximately equal rates.  相似文献   

2.
Cyanide inhibited unesterified fatty acid synthesis but stimulated glyceride synthesis from [1-14C]acetate when Spinacia oleracea chloroplasts were incubated in basal media. Both unesterified fatty acid and glyceride accumulation were inhibited when chloroplasts were incubated in a diacylglycerol mode. Stimulation of chloroplast fatty acid synthesis by either exogenous coenzyme A or Triton X-100 was almost completely abolished in the presence of cyanide. Stearoyl-ACP desaturation is considered to be inhibited to a greater extent than is fatty acid synthesis de novo.  相似文献   

3.
Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3/Cl uptake by roots.  相似文献   

4.
Fatty Acid Synthetase of Spinacia oleracea Leaves   总被引:2,自引:4,他引:2       下载免费PDF全文
The molecular organization of fatty acid synthetase system in spinach (Spinacia oleracea L. var. Viroflay) leaves was examined by a procedure similar to that employed for the safflower system (Carthamus tinctorius var. UC-1). The crude extract contained all the component activities (acetyl-CoA:ACP transacylase, malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthetase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase [I]) involved in the synthesis of fatty acids, but enoyl-ACP reductase (II) present in safflower seeds extract could not be detected spectrophotometrically. By polyethylene glycol fractionation followed by several chromatographic procedures, i.e. Sephadex G-200, hydroxyapatite, and blue-agarose, the component enzymes were clearly separated from one another. Properties of β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase (I) from spinach were compared with the same enzymes in safflower seeds and Escherichia coli.  相似文献   

5.
应用MTT法分析了菠菜种子胰蛋白酶抑制剂SOTI对人慢性髓原性白血病K-562细胞生长的影响。结果显示SOTI能够抑制K-562细胞的增殖,其抑制细胞增殖的作用呈现明显的剂量-效应关系;进一步观察了不同浓度的SOTI处理K-562细胞所导致的形态学变化和诱导凋亡作用,证实SOTI具有明显的体外抗癌活性,SO—TI的抗癌活性与其诱导凋亡有关。  相似文献   

6.
首先从菠菜叶片中纯化了乙醇酸氧化酶(GO)。通过鉴定反应中氧的消耗以及反应产物H2O2的生成,证实菠菜GO具有氧化光呼吸途径中间代谢物甘油酸的活性。该氧化活性依赖于辅因子FMN和FAD,而不依赖核黄素和光黄素;其最适反应pH值为8.0,Km(甘油酸)值为7.14mmol/L,kcat值为1.04s^-1,活化能为17.29kJ/mol;草酸和丙酮酸对该氧化活性有明显的抑制作用,其中前者为典型的竞争性抑制。进一步通过两底物竞争作图表明:菠菜叶片GO氧化甘油酸反应和氧化乙醇酸反应为同一活性中心所催化。  相似文献   

7.
L. Beerhues  H. Robenek  R. Wiermann 《Planta》1988,173(4):532-543
The two chalcone-synthase forms from leaves ofSpinacia oleracea L. were purified to apparent homogeneity. Antibodies were raised against both proteins in rabbits. The specificity of the antibodies was tested using immunotitration, immunoblotting, and immunoelectrophoresis techniques. The antibodies exhibited exclusive specificity for chalcone synthase and did not discriminate between the two antigens. The homodimeric chalcone synthases had the same subunit molecular weight but differed in their apparent native molecular weights. The peptide maps indicated extensive homology between the proteins. Chalcone-synthase activity was not detected in isolated spinach chloroplasts. Both enzyme forms were present in spinach cell-suspension cultures in which they were induced by light.Abbreviations DEAE diethylaminoethyl - DTE 1,4-dithioerythritol - EDTA ethylenediaminetetraacetic acid - HPLC high-performance liquid chromatography - IgG immunoglobulin G - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Parts of the results were presented at the 14th International Botanical Congress at Berlin in July 1987  相似文献   

8.
菠菜种子胰蛋白酶抑制剂的分离纯化与部分性质研究   总被引:3,自引:0,他引:3  
以菠菜种子为材料,经脱脂、酸性溶液抽提、热变性、硫酸铵分部沉淀得到胰蛋白酶抑制剂粗提物。再经离子交换、亲和层析和凝胶过滤,分离得到胰蛋白酶抑制剂SOTI,纯化倍数为57.22。SDS-PAGE测定其分子量约为22kD,等电聚焦测定其等电点为4.02。SOTI具有较高的热稳定性,在100℃处理后仍然具有一定的抑制活性。  相似文献   

9.
The leucine specific serine proteinase present in the soluble fraction of leaves from Spinacia oleracea L. (called Leu-proteinase) has been purified by acetone precipitation and a combination of gel-filtration, ion exchange, and adsorption chromatography. This enzyme shows a molecular weight of 60,000 ± 3,000 daltons, an isoelectric point of 4.8 ± 0.1, and a relative electrophoretic mobility of 0.58 ± 0.03. The Leu-proteinase catalyzed hydrolysis of p-nitroanilides of N-α-substituted(-l-)amino acids as well as of chromogenic macromolecular substrates has been investigated between pH 5 and 10 at 23 ± 0.5°C and I = 0.1 molar. The enzyme activity is characterized by a bell-shaped profile with an optimum pH value around 7.5, reflecting the acid-base equilibrium of groups with pKa values of 6.8 ± 0.1 and 8.2 ± 0.1 (possibly the histidyl residue present at the active site of the enzyme and the N-terminus group). Among the substrates considered, N-α-benzoyl-l-leucine p-nitroanilide shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 1 × 10−9 molar. In agreement with the enzyme specificity, only N-α-tosyl-l-leucine chloromethyl ketone, di-isopropyl fluorophosphate and phenylmethylsulfonyl fluoride, among compounds considered specific for serine enzymes, strongly inhibit the Leu-proteinase. Accordingly, the enzyme activity is insensitive to cations, chelating agents, sulfydryl group reagents, and activators.  相似文献   

10.
Summary When mature pollen grains of Spinacia oleracea were squashed in a 25% sucrose solution and subsequently centrifuged on a percoll layer, sperm cells were isolated in high numbers. All steps were carried out at 4° C. Isolated sperm cells could be kept alive for several hours.  相似文献   

11.
In experiments in which RuDP carboxylase activity was used asa marker for the integrity of isolated chloroplasts, more than90% of the starch synthase activity and more than 80% of theADP-glucose pyrophosphorylase activity of spinach leaves wasfound to be located in chloroplasts. Less than 2% of the UDP-glucosepyrophosphorylase was associated with chloroplasts. The activityof starch synthase per chloroplast remained almost constantduring plastid replication in developing leaves on whole plantsand in leaf discs cultured for 7 d on agar under different lightconditions. The ADP-glucose pyrophosphorylase activity of chloroplastsincreased during leaf development and was much lower in dark-growntissues. The results suggest that the synthesis of starch iscontrolled by the synthesis of ADP-glucose pyrophosphorylaseas well as by the previously known control of activity by metabolitessuch as 3-phosphoglyceric acid and inorganic phosphate.  相似文献   

12.
Moeller CH  Mudd JB 《Plant physiology》1982,70(5):1554-1561
Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes.  相似文献   

13.
A cDNA clone for copper/zinc-superoxide dismutase (Cu/Zn-SOD)was isolated from spinach (Spinacia oleracea L.) leaves. Itsnucleotide sequence showed that it codes for a precursor polypeptideof 222 amino acids, including the NH2-terminal 68-residue extensionwhich corresponds to a plastidic transit peptide. Northern hybridization,using plastidic and cytosolic Cu/Zn-SOD cDNAs as the probes,revealed that these two genes are differentially expressed inthe roots and leaves of spinach. 1Present address: Department of Biochemistry and Microbiology,Cook College, Rutgers University New Brunswick, NJ 08903-0231,U.S.A.  相似文献   

14.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

15.
The amino acid sequence of spinach (Spinacia oleracea L.) plastocyanin was determined. It consists of a single polypeptide chain of 99 residues and has a sequence molecular weight of 10415. The sequence was determined by using a Beckman 890C automatic sequencer and by the dansyl--phenyl isothiocyanate analysis of peptides obtained by the enzymic digestion of purified CNBr fragments. Overlap through the two methionine residues was not shown. Sedimentation equilibrium in the ultracentrifuge gave a molecular weight for spinach plastocyanin of about 9000, in contrast with the value of 21000 reported previously by Katoh et al. (1962).  相似文献   

16.
17.
Acyl carrier protein (ACP) is an essential cofactor of fatty acid synthase. In plants, ACP is synthesized in the cytosol as a larger precursor protein and then is imported into the plastid where it is processed to a smaller mature form. The active form of ACP uses a covalently linked 4[prime]-phosphopantetheine prosthetic group derived from coenzyme A to covalently bind the acyl intermediates during fatty acid synthesis. The prosthetic group is added to ACP by holoACP synthase. This enzyme activity is associated with both the plastidial subcellular fraction and the soluble, or cytoplasmic, fraction. To gain further insight into potential in vivo pathways for the synthesis and maturation of ACP, in this study we examined whether precursor holoACP can be imported by isolated spinach (Spinacia oleracea) chloroplasts. Precursor holoACP containing a [35S]phosphopantetheine prosthetic group was prepared, and the radiolabel was used to demonstrate import of the phosphopantethenylated protein into isolated chloroplasts. In addition, timed chloroplast import assays indicated that in vitro import of the phosphopantethenylated protein is at least as efficient as import of the precursor apoprotein. Evidence was also obtained for a low level turnover of the prosthetic group among endogenous plastidial ACPs when coenzyme A was supplied exogenously.  相似文献   

18.
Proteolytic fragments were obtained by limited proteolysis of120 kDa nitrate reductase from Spinacia oleracea L. using trypsinand Staphylococcus aureus V8 protease. Determination of NH2-terminalsequences in 9 to 14 Edman degradation steps allowed the exactlocalization of the fragments within the amino-acid sequenceof spinach nitrate reductase was deduced from the nucleotidesequence of cDNA clone pSPNR117 which was initially identifiedby hybridization to squash nitrate reductase cDNA clone [Crawford,1N. M., Campbell, W. H. and Davis, R. W. (1986) Proc. Natl. Acad.Sci. USA 83: 8073] and anti spinach nitrate reductase polyclonalantibodies. This clone has a 2324 base insert, and the aminoacid sequence deduced from its open reading frame, which contains640 residues. The predicted sizes 42.5 and 30 kDa were in reasonableagreement with previous determination of the apparent molecularsizes of the FAD-cyt-chrome b557-binding, and FAD-binding fragments,respectively. Arginine residue was the cleavage site for trypsin and glutamicacid was for S. aureus V8 protease. The amino acid residueswithin the linker regions which connect the functional domains,could be cleaved with trypsin or S. aureus V8 protease may bewell conserved in the amino acid sequences deduced from thenitrate reductase cDNA sequences. A sequence identity of 61.2-80.1 % was found in the amino acidsequences deduced from the cDNA sequences as obtained by spinachand other higher plant nitrate reductases. However, the aminoacid sequences surrounding the proteolytic cleavage sites ofnitrate reductase had poor homology. (Received March 30, 1991; Accepted July 24, 1991)  相似文献   

19.
The intracellular location of nitrate reductase in spinach leaveswas examined by applying an immunocytochemical method. Thinsections were first treated with immunopurified anti-nitratereductase monospecific antibodies, followed by incubation withcolloidal gold-labelled goat anti-rabbit immunoglobulin G asa marker. The nitrate reductase was specifically located inthe chloroplast. When anti-nitrate reductase antibodies wereomitted, or when pre-immune serum was used no label was observed. (Received October 30, 1986; Accepted December 25, 1986)  相似文献   

20.
Chloroplast development was followed in intact bean leaves illuminatedwith far-red light by extracting chloroplasts at various timesto assay photosynthetic activities. Photochemical activity wasdetected in isolated chloroplasts prior to the times which werepreviously reported for intact leaf discs. Cyclic phosphorylationwas observed in isolated chloroplasts after 8 h of far-red illuminationwhile non-cyclic electron transport and phosphorylation weremeasurable after 12 and 16 h of illumination respectively. TheP/2e ratios were less than 0.5 after 24 h of far-red exposurebut approached a value of 1.0 by 60 h of illumination. Ammoniumchloride (10–3 M) had little effect on electron transportin isolated chloroplasts until after 24 h of far-red illumination.Chlorophyll a accumulated slowly from the onset of far-red illuminationwhile chlorophyll b was not detected until after 48 h of far-redexposure. Leaf fresh weight increased four-fold over the 60h illumination period. Electron microscopy of isolated chloroplasts from far-red-illuminatedleaves indicated the presence of unfused primary thylakoidsby 12 h of exposure and prolamellar bodies throughout the entire60 h illumination period. Grana were not observed in isolatedchloroplasts nor were they induced by a 2 min exposure of thechloroplasts to 172 000 lx of white light. O2 evolution in leaf discs of far-red-illuminated plants wasmeasurable after 16 h of illumination, attained a maximum valueby 36 h of far-red exposure, and then declined. Net CO2 fixationwas observed in leaf discs after 8 h of far-red illuminationand the rates remained constant for an additional 16 h, beforeincreasing at least two-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号