首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.  相似文献   

2.
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.  相似文献   

3.
In this study we investigated the role of several parameters governing the efficiency of gene targeting mediated by homologous recombination in the protozoan parasite Leishmania. We evaluated the relative targeting frequencies of different replacement vectors designed to target several sequences within the parasite genome. We found that a decrease in the length of homologous sequences <1 kb on one arm of the vector linearly influences the targeting frequency. No homologous recombination was detected, however, when the flanking homologous regions were <180 bp. A requirement for a very high degree of homology between donor and target sequences was found necessary for efficient gene targeting in Leishmania , as targeted recombination was strongly affected by base pair mismatches. Targeting frequency increased proportionally with copy number of the target only when the target was part of a linear amplicon, but remained unchanged when it was present on circles. Different chromosomal locations were found to be targeted with significantly variable levels of efficiency. Finally, different strains of the same species showed differences in gene targeting frequency. Overall, gene targeting mediated by homologous recombination in Leishmania shares similarities to both the yeast and the mammalian recombination systems.  相似文献   

4.
Targeted disruption of the TGA3 locus in Arabidopsis thaliana   总被引:10,自引:3,他引:7  
A major drawback to study gene functions in plant systems is the lack of an effective gene knockout strategy. With a large number of plant genes isolated and the accelerating pace by which this collection is growing, the need for their functional analyses at the whole plant level has become increasingly urgent. Here evidence is reported for the first successful disruption of a non-selectable gene in Arabidopsis thaliana by creating a mutant of the TGA3 locus via targeted insertion of the bacterial neo gene conferring kanamycin (Km) resistance. A β-glucuronidase (GUS) expression unit outside the region of homology was used as a screenable marker to distinguish homologous recombination events from those of ectopic insertions. PCR amplification coupled with Southern blot screening identified two putative homologous recombination events among 2580 Kmr calli. One callus line was subsequently isolated and the structure of the targeted TGA3 allele confirmed by Southern blot analyses. This study demonstrates the feasibility of targeting a non-selectable locus in Arabidopsis. Combined with future improvements in negative selection strategies and efficient, transformation methodologies, gene replacement studies in plants could become a routine technique.  相似文献   

5.
In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.  相似文献   

6.
We have analysed the application of positive-negative selection for the selection of homologous recombination interactions between the chromosome and a T-DNA molecule after transformation of plant cells. Two different genomic loci in a cell suspension of Arabidopsis thaliana were chosen to study gene targeting events. One was the chalcone synthase (CHS) gene present as a single copy and the second an hemizygous chromosomally inserted T-DNA containing the hpt gene, conferring resistance to hygromycin, flanked by CHS sequences. The target lines were transformed with replacement-type T-DNA vectors which contained a positive selectable marker flanked by the regions of the CHS gene and a negative selectable marker to counter-select random insertions. As negative marker we used the Escherichia coli codA gene encoding cytosine deaminase, conferring upon the cells sensitivity to 5-flourocytosine (5-FC). Doubly selected transformants represent 1–4% of the primary transformed cells. Targeting events were not found at the chalcone synthase locus nor at the artificial hpt locus in a total of 4379 doubly selected calli, corresponding to at least 109475 individual primary transformants. We show by PCR and Southern analysis that the 5-FC resistance in the majority of these cells is associated with substantial deletions of the T-DNA molecule from the right-border end.  相似文献   

7.
In the moss Physcomitrella patens, transforming DNA containing homologous sequences integrates predominantly by homologous recombination with its genomic target. A systematic investigation of the parameters that determine gene targeting efficiency shows a direct relationship between homology length and targeting frequency for replacement vectors (a selectable marker flanked by homologous DNA). Overall homology of only 1 kb is sufficient to achieve a 50% yield of targeted transformants. Targeting may occur through homologous recombination in one arm, accompanied by non-homologous end-joining by the other arm of the vector, or by allele replacement following two homologous recombination events. Allele replacement frequency depends on the symmetry of the targeting vector, being proportional to the length of the shorter arm. Allele replacement may involve insertion of multiple copies of the transforming DNA, accompanied by ectopic insertions at non-homologous sites. Single-copy and single insertions at targeted loci (targeted gene replacements, ‘TGR’) occur with a frequency of 7–20% of all transformants when the minimum requirements for allele replacement are met. Homologous recombination in Physcomitrella is substantially more efficient than in any multicellular eukaryote, recommending it as the outstanding model for the study of homologous recombination in plants.  相似文献   

8.
9.
The frequency with which transforming DNA undergoes homologous recombination at a chromosomal site can be quite low in some fungal systems. In such cases, strategies for gene disruption or gene replacement must either select against ectopic integration events or provide easy screening to identify homologous site, double-crossover insertion events. A protocol is presented for efficient isolation of Neurospora crassa strains carrying a definitive null allele in a target gene. The protocol relies on the presence of a selectable marker flanking a disrupted plasmid-borne copy of the gene, and in the case presented led to a seven-fold enrichment for putative homologous site replacement events. In addition, a polymerase chain reaction assay is utilized for rapid identification of homologous recombinants among the remaining candidates. This protocol was used to identify 3 isolates, out of 129 primary transformants, which have a disruption in the Neurospora ccg-1 gene. The method should be applicable to a variety of fungal systems in which two selectable markers can be expressed, including those in which homologous recombination rates are too low to allow easy identification of homologous site insertions by the more traditional molecular method of Southern analysis. In addition to disrupting target genes for the purpose of generating null mutations, this method is useful for the targeting of reporter gene fusions to a native chromosomal site for the purpose of studying gene regulation.  相似文献   

10.
The frequency with which transforming DNA undergoes homologous recombination at a chromosomal site can be quite low in some fungal systems. In such cases, strategies for gene disruption or gene replacement must either select against ectopic integration events or provide easy screening to identify homologous site, double-crossover insertion events. A protocol is presented for efficient isolation of Neurospora crassa strains carrying a definitive null allele in a target gene. The protocol relies on the presence of a selectable marker flanking a disrupted plasmid-borne copy of the gene, and in the case presented led to a seven-fold enrichment for putative homologous site replacement events. In addition, a polymerase chain reaction assay is utilized for rapid identification of homologous recombinants among the remaining candidates. This protocol was used to identify 3 isolates, out of 129 primary transformants, which have a disruption in the Neurospora ccg-1 gene. The method should be applicable to a variety of fungal systems in which two selectable markers can be expressed, including those in which homologous recombination rates are too low to allow easy identification of homologous site insertions by the more traditional molecular method of Southern analysis. In addition to disrupting target genes for the purpose of generating null mutations, this method is useful for the targeting of reporter gene fusions to a native chromosomal site for the purpose of studying gene regulation.  相似文献   

11.
beta-Thalassemias are a heterogeneous group of autosomal recessive disorders, characterized by reduced or absence of the beta-globin chain production by the affected alleles. Transplantation of genetically corrected autologous hematopoietic stem cell (HSC) is an attractive approach for treatment of these disorders. Gene targeting (homologous recombination) has many desirable features for gene therapy due to its ability to target the mutant genes and restore their normal expression. In the present study, a specific gene construct for beta-globin gene replacement was constructed consisting of: two homologous stems including, upstream and downstream regions of beta-globin gene, beta-globin gene lying between hygromycin and neomycin resistant genes as positive selection markers and thymidine kinase expression cassettes at both termini as negative selection marker. All segments were subcloned into pBGGT vector. The final plasmid was checked by sequencing and named as pFBGGT. Mammalian cell line COS-7 was transfected with linear plasmid by lipofection followed by positive and negative selection. DNA of the selected cells was analyzed by PCR and sequencing to confirm the occurrence of homologous recombination. In this novel strategy gene replacement was achieved in one step and by a single construct.  相似文献   

12.
Gene targeting in maize by somatic ectopic recombination   总被引:1,自引:0,他引:1  
Low transformation efficiency and high background of non‐targeted events are major constraints to gene targeting in plants. We demonstrate here applicability in maize of a system that reduces the constraint from transformation efficiency. The system requires regenerable transformants in which all of the following elements are stably integrated in the genome: (i) donor DNA with the gene of interest adjacent to sequence for repair of a defective selectable marker, (ii) sequence encoding a rare‐cutting endonuclease such as I‐SceI, (iii) a target locus (TL) comprising the defective selectable marker and I‐SceI cleavage site. Typically, this requires additional markers for the integration of the donor and target sequences, which may be assembled through cross‐pollination of separate transformants. Inducible expression of I‐SceI then cleaves the TL and facilitates homologous recombination, which is assayed by selection for the repaired marker. We used bar and gfp markers to identify assembled transformants, a dexamethasone‐inducible I‐SceI::GR protein, and selection for recombination events that restored an intact nptII. Applying this strategy to callus permitted the selection of recombination into the TL at a frequency of 0.085% per extracted immature embryo (29% of recombinants). Our results also indicate that excision of the donor locus (DL) through the use of flanking I‐SceI cleavage sites may be unnecessary, and a source of unwanted repair events at the DL. The system allows production, from each assembled transformant, of many cells that subsequently can be treated to induce gene targeting. This may facilitate gene targeting in plant species for which transformation efficiencies are otherwise limiting.  相似文献   

13.
Toxoplasma gondii is an excellent model organism for studies on the biology of the Apicomplexa due to its ease of in vitro cultivation and genetic manipulation. Large-scale reverse genetic studies in T. gondii have, however, been difficult due to the low frequency of homologous recombination. Efforts to ensure homologous recombination have necessitated engineering long flanking regions in the targeting construct. This requirement makes it difficult to engineer chromosomally targeted epitope tags or gene knock out constructs only by restriction enzyme mediated cloning steps. To address this issue we employed multisite Gateway® recombination techniques to generate chromosomal gene manipulation targeting constructs. Incorporation of 1.5 to 2.0 kb flanking homologous sequences in PCR generated targeting constructs resulted in 90% homologous recombination events in wild type T. gondii (RH strain) as determined by epitope tagging and target gene deletion experiments. Furthermore, we report that split marker constructs were equally efficient for targeted gene disruptions using the T. gondii UPRT gene locus as a test case. The methods described in this paper represent an improved strategy for efficient epitope tagging and gene disruptions in T. gondii.  相似文献   

14.
ht-Pam基因在山羊β-酪蛋白基因座定位整合的研究   总被引:6,自引:0,他引:6  
利用体细胞基因打靶与核移植技术制备动物乳腺生物反应器是当今转基因定位整合表达的一种新技术。分别克隆山羊的β-酪蛋白基因5′调控区的6.3kb片段,外显子7、外显子8和9三个基因片段,并与克隆的人tPA突变体cDNA一起构建了含有neo和tk正负筛选标记基因的β-酪蛋白基因打靶载体PGBC4tPA,并验证了neo基因、tk基因以及Cre-LoxP系统的有效性。将线性化的PGBC4tPA通过电转染整合到山羊胎儿成纤维细胞基因组中,利用G418和GANC进行抗性细胞克隆的药物筛选,初步获得抗性细胞克隆244个,PCR检测后获得阳性细胞克隆31个,其中初步验证2个细胞克隆转植基因整合位点重组后的基因序列正确,并且该细胞克隆能够有效扩增。这为下一步基因打靶体细胞核移植制备山羊乳腺生物反应器奠定了基础。  相似文献   

15.
Targeting vectors for embryonic stem (ES) cells typically contain a mouse gene segment of >7 kb with the neo gene inserted for positive selection of the targeting event. More complex targeting vectors carry additional genetic elements (e.g. lacZ, loxP, point mutations). Here we use homologous recombination in yeast to construct targeting vectors for the incorporation of genetic elements (GEs) into mouse genes. The precise insertion of GEs into any position of a mouse gene segment cloned in an Escherichia coli/yeast shuttle vector is directed by short recombinogenic arms (RAs) flanking the GEs. In this way, complex targeting vectors can be engineered with considerable ease and speed, obviating extensive gene mapping in search for suitable restriction sites.  相似文献   

16.
The site-specific integration of exogenous gene fragments by homologous recombination provides a convenient method for altering the immunoglobulin loci of B cells and specifically designing antibody molecules. To introduce a human isotype into the heavy chain locus of mouse hybridoma cells we compared the recombination frequencies of vectors that could be linearized either as integration or as replacement constructs in different cell lines. Integration as well as replacement recombination was observed, irrespective of the location of the site at which the vector was cleaved. Integration events involving the human IgG1 vectors were lost at high frequency due to secondary vector excision, so that all stable recombinations were found to be replacement events. Replacement recombination of an integration vector involves an illegitimate crossover at least at the 3′ side and sometimes gives rise to deletion of the CH1 domain. However, a homologous event at the 3′ side is more efficient than an illegitimate one, so that a homology that is distributed on both sides of the heterologous region promotes targeting at higher frequency than a contiguous sequence of the same total length. The position of the linearization site in the vector markedly influenced the targeting efficiency, but surprisingly, whether a double-strand break in the homology or in the heterology region more efficiently promoted integration was dependent on the cell line. In all cells, however, cleavage of the vector outside the homology region favoured stable replacements with a bias against CH1-truncated clones. We further show that the frequency of replacements induced by integration vectors is not correlated to the homology length and cannot be increased by irradiation of the cells. Our findings indicate that for targeting the IgH locus other mechanisms might be involved than at other loci. Received: 20 January 1997 / Accepted: 9 June 1997  相似文献   

17.
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5′ and 3′ gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of ~0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of ~40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.  相似文献   

18.
The site-specific integration of exogenous gene fragments by homologous recombination provides a convenient method for altering the immunoglobulin loci of B cells and specifically designing antibody molecules. To introduce a human isotype into the heavy chain locus of mouse hybridoma cells we compared the recombination frequencies of vectors that could be linearized either as integration or as replacement constructs in different cell lines. Integration as well as replacement recombination was observed, irrespective of the location of the site at which the vector was cleaved. Integration events involving the human IgG1 vectors were lost at high frequency due to secondary vector excision, so that all stable recombinations were found to be replacement events. Replacement recombination of an integration vector involves an illegitimate crossover at least at the 3′ side and sometimes gives rise to deletion of the CH1 domain. However, a homologous event at the 3′ side is more efficient than an illegitimate one, so that a homology that is distributed on both sides of the heterologous region promotes targeting at higher frequency than a contiguous sequence of the same total length. The position of the linearization site in the vector markedly influenced the targeting efficiency, but surprisingly, whether a double-strand break in the homology or in the heterology region more efficiently promoted integration was dependent on the cell line. In all cells, however, cleavage of the vector outside the homology region favoured stable replacements with a bias against CH1-truncated clones. We further show that the frequency of replacements induced by integration vectors is not correlated to the homology length and cannot be increased by irradiation of the cells. Our findings indicate that for targeting the IgH locus other mechanisms might be involved than at other loci.  相似文献   

19.
Efficient gene targeting by homologous recombination in rice   总被引:26,自引:0,他引:26  
Modification of genes through homologous recombination, termed gene targeting, is the most direct method to characterize gene function. In higher plants, however, the method is far from a common practice. Here we describe an efficient and reproducible procedure with a strong positive/negative selection for gene targeting in rice, which feeds more than half of the world's population and is an important model plant. About 1% of selected calli and their regenerated fertile plants were heterozygous at the targeted locus, and only one copy of the selective marker used was found at the targeted site in their genomes. The procedure's applicability to other genes will make it feasible to obtain various gene-targeted lines of rice.  相似文献   

20.
In this study, the mechanism of mammalian gene replacement was investigated. The system is based on detecting homologous recombination between transferred vector DNA and the haploid, chromosomal immunoglobulin mu-delta region in a murine hybridoma cell line. The backbone of the gene replacement vector (pCmuCdeltapal) consists of pSV2neo sequences bounded on one side by homology to the mu gene constant (Cmu) region and on the other side by homology to the delta gene constant (Cdelta) region. The Cmu and Cdelta flanking arms of homology were marked by insertions of an identical 30-bp palindrome which frequently escapes mismatch repair when in heteroduplex DNA (hDNA). As a result, intermediates bearing unrepaired hDNA generate mixed (sectored) recombinants following DNA replication and cell division. To monitor the presence and position of sectored sites and, hence, hDNA formation during the recombination process, the palindrome contained a unique NotI site that replaced an endogenous restriction enzyme site at each marker position in the vector-borne Cmu and Cdelta regions. Gene replacement was studied under conditions which permitted the efficient recovery of the product(s) of individual recombination events. Analysis of marker segregation patterns in independent recombinants revealed that extensive hDNA was formed within the Cmu and Cdelta regions. In several recombinants, palindrome markers in the Cmu and Cdelta regions resided on opposite DNA strands (trans configuration). These results are consistent with the mammalian gene replacement reaction involving two crossing-over events in homologous flanking DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号