首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An auto-controlled climate system was used to study how a boreal bioenergy crop (reed canary grass, Phalaris arundinacea L., hereafter RCG) responded to a warming climate and elevated CO2. Over one growing season (April–September of 2009), RCG from young and old cultivations (3 years [3-year] and 10 years [10-year]) was grown in closed chambers under ambient conditions (CON), elevated CO2 (EC, approximately 700 μmol?mol?1), elevated temperature (ET, ambient + approximately 3 °C) and elevated temperature and CO2 (ETC). The treatments were replicated four times. Throughout the growing season, the above-ground (leaf and stem biomass) and below-ground biomasses were measured six times, representing various developmental stages (early stages: the first three stages, and late stages: the last three stages). Compared to the growth observed under CON, EC enhanced RCG biomass growth over the whole growing season (p?<?0.05), whereas ET increased RCG biomass growth in early stages but decreased growth in late stages, regardless of the cultivation age. However, the negative effect of ET later in the growing season was partially mitigated by CO2 enrichment. Compared to CON plants, the final total biomass was 18 % higher for 3-year plants and 8 % higher for 10-year plants grown under EC. In comparison, for 3-year and 10-year plants, the biomass was 5 and 3 % lower under ET and 7 and 4 % greater under ETC, respectively. Under EC, the below-ground growth contributed more to the total biomass growth compared to the above-ground portion. The opposite situation was observed under ET and ETC. The climate-related changes in biomass growth were smaller in the old cultivation than in the young cultivation due to the lower net assimilation rate and lower specific leaf area in the old cultivation plants.  相似文献   

2.
The regeneration potential, antioxidative enzyme activities, and genetic stability among micropropagated plantlets of Dianthus caryophyllus L. were evaluated. Multiple adventitious shoots were induced from leaf explants on Murashige and Skoog medium incorporated with various combinations and concentrations of plant growth regulators (PGRs). The highest leaf explant response (90%), number of shoots per explant (15.30?±?1.19), and shoot length (6.75?±?0.63 cm) was recorded in response to a combination of 2.5 μM 6-benzyladenine and 0.5 μM α-naphthaleneacetic acid (NAA) after 8 wks culture. Subsequent subculturing for five passages, on a medium with the same composition of PGRs, induced the highest shoot number (42.50?±?1.44), with an average shoot length of 8.06 cm after the fourth subculture. Different concentrations of indole-3-butyric acid (IBA) were tested to determine the optimum conditions for ex vitro rooting of microshoots. The best result was accomplished with a pulse treatment of IBA (100 μM) applied to the basal end of the microshoot for 30 min, followed by transfer to plastic cups containing soilrite, and eventually established in natural soil with an 85% survival rate. The determination of activities of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase) revealed involvement of these enzymes in shoot differentiation and development. All of these activities were interlinked with each other and played significant roles in the scavenging of toxic free radicals. Intersimple sequence repeat DNA analysis was carried out using five primers. The amplification products were monomorphic in micropropagated plants, similar to those of the mother plant. No polymorphisms were detected revealing the genetic integrity of the micropropagated plants.  相似文献   

3.
In order to set up large-scale acclimatization protocols of micropropagated plants, an in-depth knowledge of their physiological responses during in vitro to ex vitro transfer is required. This work describes the photosynthetic performance of Ulmus minor micropropagated plants during acclimatization at high irradiance (HI; 200 ± 20 μmol m?2 s?1 or low irradiance (LI; 100 ± 20 μmol m?2 s?1). During this experiment, leaf pigment content, chlorophyll a fluorescence, gas exchange, stomata morphology, the activity of the Calvin cycle enzymes and saccharides were measured in persistent and new leaves. The results indicated that HI induces a higher photosynthetic performance compared to LI. Therefore, plants acclimatized under HI are likely to survive better after field transfer.  相似文献   

4.
Globally, there is a continuous effort geared toward improving micropropagation protocols with much emphasis on the type of cytokinins (CKs). We investigated the effect of meta-topolin tetrahydropyran-2-yl [mTTHP—a novel derivative of the aromatic cytokinin meta-topolin (mT)] on shoot proliferation, photosynthetic pigment content, phytochemicals and antioxidant activity of two widely used medicinal plants, Aloe arborescens and Harpagophytum procumbens. In terms of shoot proliferation, besides mTTHP and mT (at equimolar level) showing comparable effects, both topolins were significantly better than the control and benzyladenine riboside (BAR) in micropropagated A. arborescens. In H. procumbens, mT-treated cultures were the most responsive treatment at 2.5 μM when compared to the control. At 5.0 μM concentration, mTTHP and meta-topolin riboside (mTR) demonstrated a comparable effect on shoot proliferation. To a certain extent (particularly at low concentrations), mTTHP had a better rooting stimulatory effect when compared to the other CKs in both investigated species. In micropropagated A. arborescens, 2.5 μM mTTHP showed the best antioxidant activity (ferric reducing power) which was significantly higher than the control and all BAR-treated plants. Although 2.5 μM mTTHP exhibited a significant antioxidant activity (in β-carotene based assay) when compared to mTR at equimolar level in H. procumbens, it was not significantly different from the treatment with 2.5 μM mT and the control. As evidenced in the current study, the efficacy of the novel cytokinin may be species-specific and beneficial for few physiological parameters. It is conceivable that mTTHP is another viable alternative topolin with the extra advantage of inducing rooting at a low concentration.  相似文献   

5.
Essential oil obtained from the leaves of Blumea mollis (D. Don) Merr. was analyzed by gas chromatography and gas chromatography coupled with mass spectroscopy (GC and GC–MS). Bicyclic sesquiterpene, β-caryophyllene, was identified as a major compound which accounted for 24.54 %. Antioxidant activity of oil was significantly higher than that of methanol extract of callus. Murashige and Skoog (MS) medium supplemented with 4.4 μM BA showed multiple shoot induction after 8 weeks of culture. 4.6 μM Kin showed in vitro flowering and direct organogenesis was observed from the leaf explants on medium containing 4.4 μM BA and 5.4 μM NAA. Rooted plantlets developed on half strength MS medium fortified with 2.1 μM IBA were hardened and percentage survival was recorded up to 70. RAPD analysis revealed a little genetic variation in micropropagated plants.  相似文献   

6.
The present work describes a digital image analysis method based on leaf color analysis to estimate chlorophyll content of leaves of micropropagated potato plantlets. For estimation of chlorophyll content, a simple leaf digital analysis procedure using a simple digital still camera was applied in parallel to a SPAD chlorophyll content meter. RGB features were extracted from the image and correlated with the SPAD values. None of the mean brightness parameters (RGB) were correlated with the actual chlorophyll content following simple correlation studies. However, a correlation between the chromaticity co-ordinates ‘r’, ‘b’ and chlorophyll content was observed, while co-ordinate ‘g’ was not significantly correlated with chlorophyll content. Linear regression and artificial neural networks (ANN) were applied for correlating the mean brightness (RGB) and mean brightness ratio (rgb) features to chlorophyll content of plantlet leaves determined through a SPAD meter. The chlorophyll content as determined by the SPAD meter was significantly correlated (RMSE = 3.97 and 3.59, respectively, for linear and ANN models) to the rgb values of leaf image analysis. Both the models indicate successful prediction of chlorophyll content of leaves of micropropagated plants with high correlation. The developed RGB-based digital image analysis has the advantage over conventional subjective methods for being objective, fast, non-invasive, and inexpensive. The system could be utilized for real-time estimation of chlorophyll content and subsequent analysis of photosynthetic and hyperhydric status of the micropropagated plants for better ex vitro survival.  相似文献   

7.
We previously introduced the bar gene, along with chitinase and AP24 genes, into the pineapple genome. The present report focuses on the evaluation of the first vegetative generation of a transgenic clone containing these genes. Three materials were compared: macropropagated controls (non-transformed), micropropagated controls (non-transformed), and micropropagated transformed plants. From each group, 50% of the plants were sprayed with FINALE® 3 mo after the experiment initiation. The characterization was performed after 1 yr of field growth. FINALE® killed all non-transgenic plants. Plants that survived the herbicide application showed 2n?=?50 chromosomes in their roots after 1 yr in the field. Micropropagated transformed plants sprayed with FINALE® did not show phenotype differences from micropropagated transformed plants not sprayed with the herbicide. Between the micropropagated transformed plants sprayed with FINALE® and the micropropagated control plants, the following differences were observed: modifications in levels of cell wall-linked, free and total phenolics, and total proteins. Moreover, changes of the fruit mass without crown were also recorded. Between the micropropagated transformed plants sprayed with FINALE® and the macropropagated control plants, levels of chlorophyll b, total chlorophyll pigments, and proteins were different. Furthermore, activities of phenylalanine ammonia-lyase, superoxide dismutase, and glutamine synthetase were dissimilar. The plant height and diameter, and the crown height were also different. Until now, we have evaluated transformed pineapple plants during hardening and field growth. Although some unexpected variations were recorded, we believe they are not relevant enough to justify rejection of transgenesis as an important tool for pineapple genetic improvement.  相似文献   

8.

Main conclusion

In vitro conditions and benzyladenine influenced both content and composition of micropropagated Micromeria pulegium essential oils, with pulegone and menthone being the main essential oil components. The content and chemical composition of Micromeria pulegium (Rochel) Benth. essential oils were studied in native plant material at vegetative stage and in micropropagated plants, obtained from nodal segments cultured on solid MS medium supplemented with N6–benzyladenine (BA) or kinetin at different concentrations, alone or in combination with indole-3-acetic acid. Shoot proliferation was achieved in all treatments, but the highest biomass production was obtained after treatment with 10 μM BA. Phytochemical analysis identified up to 21 compounds in the essential oils of wild-growing and in vitro cultivated plants, both showing very high percentages of total monoterpenoids dominated by oxygenated monoterpenes of the menthane type. Pulegone and menthone were the main essential oil components detected in both wild-growing plants (60.07 and 26.85 %, respectively) and micropropagated plants grown on either plant growth regulator-free medium (44.57 and 29.14 %, respectively) or BA-supplemented medium (50.77 and 14.45 %, respectively). The percentage of total sesquiterpenoids increased in vitro, particularly owing to sesquiterpene hydrocarbons that were not found in wild-growing plants. Differences in both content and the composition of the essential oils obtained from different samples indicated that in vitro culture conditions and plant growth regulators significantly influence the essential oils properties. In addition, the morphology and structure of M. pulegium glandular trichomes in relation to the secretory process were characterized for the first time using SEM and light microscopy, and their secretion was histochemically analyzed.
  相似文献   

9.
Dioon edule seedling mortality is mostly attributed to dehydration by prolonged drought, even when they present xeromorphic characteristics like the adult plants. The effect of germination date (GD) and soil water deficit on seedling tolerance to water stress was assessed. The seedlings germinated and grown from mature seeds every month from December to April GD were selected to evaluate the leaf area, photosynthetic pigment content, crassulacean acid metabolism (CAM) activity, stomatal conductance (gs) and leaflet anatomy at soil water potential (Ψs) of 0.0 MPa (day 1), ?0.1 MPa (day 40), ?1.0 MPa (day 90), ?1.5 MPa (day 130), and a control (0.0 MPa at day 130) to recognize differences due to leaf development. The seedlings shifted from C3 to CAM cycling when exposed to water stress at Ψs of ?1.0 MPa, like adult plants. The March–April GD seedlings with undeveloped sclerified hypodermis and stomata, presented reduced leaf area, lower Chlorophyll a/b ratio, higher CAM activity and midday partial stomatal closure when reached Ψs of ?1.0 MPa. These have higher probability of dehydration during severe drought (February–April) than those of the December–February GD with similar Ψs. Plants used for restoration purposes must have full leaf development to increase the survival.  相似文献   

10.
Alterations in leaf trichomes, stomatal characteristics and epidermal cellular features were investigated in micropropagated rhubarb (Rheum rhaponticum L.) PC49. The results showed that micropropagated regenerants had produced significantly lower stomatal index, but larger epidermal cell size than conventional plants. In addition, altered trichome morphology and abnormal stomata, e.g. twin-stomata were constantly noted only in micropropagated plants. The microscopic observation demonstrated a substantially larger intercellular space in palisade and mesophyll only in leaves of micropropagated plants. But the results showed no difference in chloroplast number and chlorophyll content between micropropagated and conventional plants. All the abnormalities suggest somaclonal variation may have occurred in micropropagated rhubarb PC49.  相似文献   

11.
The comparative responses of two young olive trees (Olea europaea L. ‘Chemlali’ and ‘Chetoui’) to drought stress were investigated during 1 month. Three-month-old own-rooted plants were subjected to two irrigation treatments: WW (well watered plants that were irrigated with fresh water to maintain a soil water content close to field capacity), and WS (water stressed plants by withholding water). Leaf water potential, gas exchange and leaf lipid composition were studied. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle compared to ‘Chetoui’. Water stress induced a larger decrease in the total lipid content in ‘Chetoui’ than in ‘Chemlali’. Interestingly, the constitution of different lipid classes was highly altered in ‘Chetoui’. Lipid changes in Chemlali, a drought tolerant cultivar, revealed more stability of its cellular membranes to drought stress as compared to the drought susceptible olive cultivar, Chétoui. Furthermore, in comparison to the controls, drought stressed plants showed an increase in the degree of unsaturation of leaf lipids in the two olive cultivars. Moreover, the results observed in Chemlali showed that besides changes in lipids composition this cultivar may have an efficient defence strategy which can be related on antioxidative production against oxidative stress.  相似文献   

12.
13.
A high-frequency clonal propagation protocol was developed for Curcuma angustifolia Roxb., a high valued traditional medicinal plant. Axillary bud explants of C. angustifolia were explanted on Murashige and Skoog (MS) medium fortified with 4.4–22.2 µM 6-benzyladenine (BA), 2.9–5.7 µM indole-3-acetic acid (IAA), 2.3–23.2 µM kinetin (Kin), 2.7–5.4 µM naphthalene acetic acid (NAA) and 67.8-271.5 µM adenine sulphate (Ads) in different combinations. The maximum number of shoots per explants (14.1?±?0.55) and roots per shoot (7.6?±?0.47) was achieved on media containing 13.3 µM BA, 5.7 µM IAA and 135.7 µM Ads. Stability in phytomedicinal yield potential of micropropagated plants was assessed through GC–MS and HPTLC. Gas chromatogram of essential oil of conventional and micropropagated plants of C. angustifolia had similar essential oil profile. HPTLC analysis of rhizome extracts of in vitro and field grown plants revealed no significant differences in the fingerprint pattern and in curcumin content. Genetic integrity of in vitro and field grown derived plants were evaluated with inter-simple sequence repeat (ISSR) primers and flow cytometry using Glycine max as an internal standard. A total of 1260 well resolved bands were generated by 12 ISSR primers showing monomorphic banding patterns across all plants analyzed. The mean 2C DNA content of conventionally and micropropagated plant was estimated to be 2.26 pg and 2.31 pg, respectively. As no somaclonal variations were detected in tissue culture plantlets, the present micropropagation protocol could be applied for in vitro conservation and large-scale production of C. angustifolia.  相似文献   

14.
An efficient in vitro propagation is described for Punica granatum L. using shoot tip and nodal explants. The influence of two basal medium, WPM and MS, and different plant growth regulators was investigated on micropropagation of the Iranian pomegranate cultivars, ‘Malas Saveh’ and ‘Yousef Khani’. For proliferation stage, media supplemented with different concentrations (2.3, 4.7, 9.2 and 18.4 μM) of kinetin along with 0.54 μM NAA was used. WPM proved to be more efficient medium compared to MS. The best concentrations of kinetin were 4.7 μM for ‘Malas Saveh’ and 9.2 μM for ‘Yousef Khani’, resulting in the highest number of shoots per explants, shoot length and leaf number. For both cultivars, half-strength WPM medium supplemented with 5.4 μM NAA was most effective for rooting of shoots. Rooted plantlets were successfully acclimatized and transferred into soil. The micropropagated plants were morphologically uniform and exhibited similar growth characteristics and vegetative morphology to the mother plants.  相似文献   

15.
Drought is a major environmental stress that limits cotton (Gossypium hirsutum L.) production worldwide. TaMnSOD plays a crucial role as a peroxidation scavenger. In this study, TaMnSOD cDNA of Tamarix albiflonum was overexpressed in the cotton cultivar fy11 by Agrobacterium tumefaciens-mediated transformation. The transformed plants were assessed by gDNA PCR, RT-PCR and DNA gel blot analysis. The physiological and biochemical characters of two independent transgenic lines and control plants were tested and compared, and the morphological traits (biomass, root and lateral root length, leaf number) were also detected after recovery from water-withholding stress. When water was withheld from pot-grown 6-week-old seedlings for 18 days (watering to 8 % of field capacity), transgenic cotton plants accumulated more proline and soluble sugar than wild-type plants (WT). The activity of antioxidant enzymes such as superoxide dismutase and peroxidase was enhanced in transgenic plants under drought stress. Cell membrane integrity was also considerably improved under water stress, as indicated by reduced malondialdehyde content relative to control plants. Furthermore, net photosynthesis, stomatal conductance and transpiration rate were increased in transgenic plants compared with wild type. Transgenic cotton showed increases in biomass as well as root and leaf systems compared with WT after 2 weeks recovery from stress. These results suggest that TaMnSOD transgenic cotton plants acquired improved drought tolerance through enhanced development of the root and leaf system and the regulation of superoxide scavenging.  相似文献   

16.
This study was carried out to evaluate the inoculation effects of Achromobacter xylosoxidans AUM54 and Indole-3-butyric acid (IBA) on the growth of the medicinal plant Naravelia zeylanica (L.) DC under micropropagation conditions. Results revealed that the micropropagated shoots treated with the combination of endophytic bacterium and IBA promoted shoot growth, root length, number of roots, chlorophyll content, nitrogen content, antioxidant enzymes, and stress tolerance compared with the control plants. A significant increase in shoot fresh and dry weights (64.65 and 8.85 %), root fresh and dry weights (61.65 and 3.91 %), shoot length (30.17 %), root length (28.57 %) and number of roots (276.9 %) was observed in treated plants over controls. Total chlorophyll and nitrogen content of bacterized plants also treated with IBA showed a 48.39 and 116.66 % increase, respectively, compared with controls. A significant increase in peroxidase (22.52 %) and superoxide dismutase levels (48.38 %) and fewer changes in the polyphenol oxidase level were observed in plants treated with A. xylosoxidans AUM54 and IBA. Moreover, stress ethylene levels were reduced by 21.4 and 14.5 % due to bacterization with A. xylosoxidans AUM54 and IBA treatment during postacclimatization and acclimatization stages, respectively. The shoot primordial with application of A. xylosoxidans AUM54 and IBA (1 mg l?1) had increased survivability of N. zeylanica plants by 30 % during the acclimatization stage under greenhouse conditions. From the present study it could be inferred that the association of endophytic bacterium A. xylosoxidans AUM54 and IBA with in vitro shoots of N. zeylanica improved root initiation, promoted plant growth and development under micropropagation conditions, reduced stress ethylene levels, and increased survivability during the postacclimatization stage. Therefore, A. xylosoxidans AUM54 along with IBA treatment can be used as a valuable tool for micropropagation of N. zeylanica and other endangered plants.  相似文献   

17.
In the present work, we investigated the effect of salt stress on the distribution of safflower (Carthamus tinctorius L.) antioxidant system in relation to leaf age. The study was carried out under growth chamber conditions using seedlings of three cultivars which were subjected to 0 and 50 mM NaCl for 3 weeks. Leaf growth, water content, lipid peroxidation, and phenolic compound (total polyphenols, total flavonoids, and proanthocyanidins) concentration were measured at two leaf stages (young and old leaves). Leaf growth was affected by salinity only in Kairouan cultivar that also showed a significant decrease in old leaf water content. By contrast, Gabes and Tazarka cultivars maintained their old leaf water content constant and showed a reduction in that of young leaves. This could be attributed to a higher aptitude of the latter two cultivars to use absorbed sodium and chloride for osmotic adjustment in old leaves, keeping potassium for specific functions. Salt-induced lipid peroxidation was observed only in old leaves, whereas the accumulation of the major phenolic compounds under saline conditions was higher in young leaves, except in Gabes cultivar where no significant difference was found between the two leaf stages. A significant variability was also found between the three cultivars. The better behavior of salt-challenged leaves of Gabes and Tazarka cultivars compared to that of Kairouan cultivar may be related to their higher water content and the accumulation of polyphenols, in particular flavonoids that were shown to be efficiently involved in the restriction of salt-induced oxidative damages.  相似文献   

18.
Vernonia herbacea is a native species from the Brazilian Cerrado that accumulates about 80 % of inulin-type fructans in the underground reserve organs, the rhizophores. This work aimed at establishing a protocol for in vitro culture of V. herbacea, using seeds (achenes) and leaf discs as explants. Following germination and seedling growth, stem nodes from 6-month-old in vitro germinated plants were isolated and incubated on culture medium free of growth regulators for plant propagation and rhizophore formation. Fructan content and composition were evaluated in leaves, stems, roots and rhizophores from plants grown in vitro and compared with those of greenhouse-grown plants, in order to evaluate inulin production in vitro. Fructan contents of aerial organs and roots from in vitro plants were higher, compared with greenhouse plants, while in rhizophores, the opposite was observed. High performance anion exchange chromatography/pulsed amperometric detection profiles revealed the presence of the inulin homologous series in the aerial organs exclusively for in vitro plants, while in roots and rhizophores, this series was detected in plants grown in both conditions. These results indicate a modification in the source/sink ratio, leading to changes in the distribution of carbohydrates in in vitro plants. The leaf disc cultures on medium supplemented with indole-3-butyric acid induced the formation of roots (0.24, 0.49 µM) and friable callus (2.46 µM), while 6-benzylaminopurine (from 1.1 through 4.43 µM) induced compact callus. However, no shoot formation was observed. The use of seeds allowed the establishment of a protocol for in vitro culture and provides a model system for a better understanding of fructan metabolism in V. herbacea.  相似文献   

19.
The aim of this study was to combine data on photosynthetic performance, growth and mineral nutrition of Quercus petraea, Fagus sylvatica and Acer pseudoplatanus growing six years under a Norway spruce canopy. Three years old saplings were planted on several adjoining plots from the forest edge up to 35 m inside the spruce forest on nutrient poor dystric cambisols. Growth parameters, photosynthetic capacity and leaf nutrition were repeatedly measured on 11 to 13 selected plants for each species every year from 1996 to 2001. The general performance of the plants growing along the light gradient from forest edge into the closed canopy decreased in the order F. sylvatica, Q. petraea and A. pseudoplatanus. The photosynthetic performance of Acer declined from the second year onwards as consequence of low nutrient supply. The plants had in most cases higher leaf nitrogen concentration in shade. This increase going along with declining light input was the best in Quercus and was found in Acer leaves only in the second year after the planting. The growth parameters of all investigated plants were not correlated to the light environment within the range of canopy gap fraction between 0.05 and 0.62. However, the total leaf area as well as nutrient amounts in the foliage were good predictors for total plant height and plant diameter at root collar of Fagus and Quercus, but failed in most cases for Acer. These results emphasise the important role of nutrient acquisition for young broadleaves introduced in Norway spruce stands and underline the different requirements for nutrient supply at the species level.  相似文献   

20.
An efficient plant regeneration protocol was developed from leaf explants of Aloe barbadensis Mill on Murashige and Skoog’s (MS) medium supplemented with 2.0 mg/l 6-benzyladenine (BA) or Kinetin (Kn), 0.25–0.5 mg/l NAA (1-napthalene acetic acid) and 3 % (w/v) sucrose within 4 weeks of culture. The maximum number of shoot buds were obtained on MS medium supplemented with 2.0 mg/l BA, 0.5 mg/l NAA, 40 mg/l Ads (adenine sulphate) within 4–6 weeks of subculture. Inclusion of 0.25–0.50 mg/l gibberellic acid into the medium, the shoot buds became elongated. Repeated subculture on regeneration medium induces higher rate of shoot regeneration. The root induction from excised microshoots was achieved on half-strength MS medium supplemented with 0.25–1.0 mg/l NAA or indole-3-butyric acid (IBA) and 2 % (w/v) sucrose. Maximum percentage of rooting was achieved on medium having 0.5 mg/l NAA with 3 % (w/v) sucrose. About 80 % of in vitro raised plantlets were hardened in the greenhouse and successfully established in the soil. Both Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) markers were used to detect the variability among the regenerated plants developed in vitro. The results showed that there was no polymorphism among the regenerated plantlets. This study will help for propagation of quality planting material of Aloe barbadensis for commercialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号