首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CAMP-dependent protein kinase: prototype for a family of enzymes   总被引:3,自引:0,他引:3  
Protein kinases represent a diverse family of enzymes that play critical roles in regulation. The simplest and best-understood biochemically is the catalytic (C) subunit of cAMP-dependent protein kinase, which can serve as a framework for the entire family. The amino-terminal portion of the C subunit constitutes a nucleotide binding site based on affinity labeling, labeling of lysines, and a conserved triad of glycines. The region beyond this nucleotide fold also contains essential residues. Modification of Asp 184 with a hydrophobic carbodiimide leads to inactivation, and this residue may function as a general base in catalysis. Despite the diversity of the kinase family, all share a homologous catalytic core, and the residues essential for nucleotide binding or catalysis in the C subunit are invariant in every protein kinase. Affinity labeling and intersubunit cross-linking have localized a portion of the peptide binding site, and this region is variable in the kinase family. The crystal structure of the C subunit also is being solved. The C subunit is maintained in its inactive state by forming a holoenzyme complex with an inhibitory regulatory (R) subunit. This R subunit has a well-defined domain structure that includes two tandem cAMP binding domains at the carboxy-terminus, each of which is homologous to the catabolite gene activator protein in Escherichia coli. Affinity labeling with 8N3 cAMP has identified residues that are in close proximity to the cAMP binding sites and is consistent with models of the cAMP binding sites based on the coordinates of the CAP crystal structure. An expression vector was constructed for the RI subunit and several mutations have been introduced. These mutations address 1) the major site of photoaffinity labeling, 2) a conserved arginine in the cAMP binding site, and 3) the consequences of deleting the entire second cAMP binding domain.  相似文献   

2.
GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called “loop D” which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the “100H/R-site” benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50–17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4/6+β3- EtOH/Ro15-4513 site. This model reconciles many years of alcohol research on GABARs and provides a plausible explanation for the competitive relationship between ethanol and iBZ alcohol antagonists in which bulky moieties at the C7 position compete with ethanol for its binding site. We conclude with a critical discussion to suggest that much of the controversy surrounding this issue might be due to fundamental species differences in alcohol and alcohol antagonist responses in rats and mice.  相似文献   

3.
Plasma membranes of 6-h differentiated Dictyostelium discoideum cells contain a cAMP-binding protein with the properties ascribed to the chemotaxis receptor present on these cells. We have purified this cAMP-binding protein using DEAE-Sephadex chromatography, hydrophobic chromatography on decylagarose and preparative polyacrylamide gel electrophoresis in nonionic detergent. Photoaffinity labeling of the DEAE-purified material with 8-azido-[32P] cAMP shows that only an Mr = 70,000 species on sodium dodecyl sulfate gels contains a cAMP-binding site. Two-dimensional polyacrylamide gel electrophoresis of material eluted from decyl-agarose and photoaffinity labeled indicates that the cAMP-binding protein is the most acidic of many Mr = 70,000 proteins present. This method is readily scaled up to process up to 10(11) cells which yield from 25 to 100 micrograms of cAMP-binding protein. Nucleotide specificity studies established that the cAMP-binding site of the protein is similar to that of the cAMP receptor assayed on intact cells and membranes. The rates of association and dissociation of the cAMP-binding protein are extremely rapid as found for the receptor, and its affinity for cAMP is comparable. The cAMP-binding protein is a concanavalin A binding glycoprotein, and is resistant to proteolysis by trypsin, but not chymotrypsin. Like the cAMP receptor in membranes and crude detergent extracts, this cAMP-binding protein is inhibited by phenylmethylsulfonyl fluoride. The purified binding protein exists in solution largely as a monomeric species, with some dimer being detected on gel filtration. Based on these criteria, we conclude that this cAMP binding protein represents the binding subunit of the cAMP chemotaxis receptor.  相似文献   

4.
Symmetry of binding sites of a mouse IgA myeloma protein (MOPC 315)   总被引:2,自引:0,他引:2  
R Eisenberg  P Plotz 《Biochemistry》1978,17(22):4801-4807
We have investigated the mechanism of monovalency of the 7S subunit of a mouse IgA myeloma protein (MOPC 315) against a large antigen. This subunit, although it clearly can bind two molecules of a small hapten, fails to precipitate or hemagglutinate the relevant multivalent antigen. In an equilibrium Farr assay, we have shown that the subunit has only one valence for a univalent 40,000 molecular weight antigen (dinitrophenyl-dextran). We have investigated how various levels of affinity labeling quantitatively affect (a) the valence observed in the equilibrium Farr assay against a large antigen, and (b) the binding of the MOPC 315 to an insoluble antigenic matrix. Our results indicate that the Fab regions of the 7S subunit are arranged symmetrically and that the inactivity of one of them toward a large antigen is probably due to steric hindrance caused by the antigen bound to the adjacent site.  相似文献   

5.
We have determined the 2.5 angstroms crystal structure of an active, tetrameric Streptomyces coelicolor type II polyketide ketoreductase (actIII) with its bound cofactor, NADP+. This structure shows a Rossman dinucleotide binding fold characteristic of SDR enzymes. Of two subunits in the crystallographic asymmetric unit, one is closed around the active site. Formate is observed in the open subunit, indicating possible carbonyl binding sites of the polyketide intermediate. Unlike previous models we observe crystal contacts that may mimic the KR-ACP interactions that may drive active site opening. Based on these observations, we have constructed a model for ACP and polyketide binding. We propose that binding of ACP triggers a conformational change from the closed to the open, active form of the enzyme. The polyketide chain enters the active site and reduction occurs. The model also suggests a general mechanism for ACP recognition which is applicable to a range of protein families.  相似文献   

6.
It is has been previously suggested that the protein Op18/stathmin may interact with tubulin via the alpha-tubulin subunit [Larsson, N., Marklund, U., Melander Gradin, H., Brattsand, G. & Gullberg, M. (1997) Mol. Cell. Biol. 17, 5530-5539]. In this study we have used limited proteolysis and cross-linking analysis to localize further the stathmin-binding site on alpha-tubulin. Our results indicate that such a binding site is in a region close to the C-terminus of the molecule comprising residues 307 to the subtilisin-cleavage site on the alpha-tubulin subunit. Based on a recent model of the structure of tubulin [Nogales, E., Wolf, S.G. & Dowing, D.H. (1998) Nature (London) 391, 199-203], we found that this region contained the same areas that may be involved in longitudinal contacts of alpha-tubulin subunits within the microtubule. We also observed that the binding of stathmin to tubulin can modulate the binding of GTP to tubulin, as a consequence of a conformational change in the beta-tubulin subunit that occurs upon interaction of stathmin with tubulin.  相似文献   

7.
T Kitamura  N Sato  K Arai  A Miyajima 《Cell》1991,66(6):1165-1174
A cDNA for a human interleukin-3 (hIL-3) binding protein has been isolated by a novel expression cloning strategy: a cDNA library was coexpressed with the cDNA for the beta subunit of human granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor (hGMR beta) in COS7 cells and screened by binding of 125I-labeled IL-3. The cloned cDNA (DUK-1) encodes a mature protein of 70 kd, which belongs to the cytokine receptor family and which alone binds hIL-3 with extremely low affinity (Kd = 120 +/- 60 nM). A high affinity IL-3-binding site (Kd = 140 +/- 30 pM) was reconstituted by coexpressing the DUK-1 protein and hGMR beta, indicating that hIL-3R and hGMR share the beta subunit. Therefore, we designated DUK-1 as the alpha subunit of the hIL-3R. As in human hematopoietic cells, hIL-3 and hGM-CSF complete for binding in fibroblasts expressing the cDNAs for hIL-3R alpha, GMR alpha, and the common beta subunit, indicating that different alpha subunits compete for a common beta subunit.  相似文献   

8.
We have previously observed that the Ya subunit-containing glutathione (GSH) S-transferases from rat liver exhibit a common high affinity binding site for lithocholic acid, bilirubin, and sulfobromophthalein (BSP) (1984. J. Lipid Res. 25: 1177-1183). Subsequently we found that cholic acid and its amidates bound to a site on the Ya subunit separate for the lithocholic acid/bilirubin site (1986. J. Lipid Res. 27: 955-966). We now have extended this work by showing that amidates of lithocholic acid as well as chenodeoxycholic acid and its amidates competitively displace [14C]lithocholic acid from the Ya subunit. GSH did not inhibit binding of any of the ligands to the high affinity Ya site, but did inhibit binding to the cholic acid site on the Ya subunit. We have also defined the binding sites and effects of GSH on the Yb class of subunits. Lithocholic, chenodeoxycholic, and cholic acids (and amidates) shared a common site on the Yb or Y'b subunit, whereas BSP and bilirubin were bound at a different site. Both the bile acid and organic anion sites on the Yb subunit were inhibited by GSH. The inhibition by GSH in all cases (Ya cholic acid site or Yb bile acid or bilirubin sites) was saturable, of the competitive type, and incomplete at maximal GSH concentrations, suggesting that when GSH binds to its distinct substrate site, it induces a conformational change in the proteins affecting the other binding sites.  相似文献   

9.
10.
Sun L  Harris ME 《RNA (New York, N.Y.)》2007,13(9):1505-1515
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.  相似文献   

11.
In response to a meiosis-inducing hormone, 1-methyladenine (1-MA), starfish oocytes undergo reinitiation of meiosis with germinal vesicle breakdown. The 1-MA-initiated signal is, however, inhibited by prior microinjection of pertussis toxin into the oocytes (Shilling, F., Chiba, K., Hoshi, M., Kishimoto, T., and Jaffe, L.A. (1989) Dev. Biol. 133, 605-608), suggesting that a pertussis-toxin-sensitive guanine-nucleotide-binding protein (G protein) is involved in the 1-MA-induced signal transduction. Based on these findings, we purified a G protein serving as the substrate of pertussis toxin from the plasma membranes of starfish oocytes. The purified G protein had an alpha beta gamma-trimeric structure consisting of 39-kDa alpha, 37-kDa beta, and 8-kDa gamma subunits. The 39-kDa alpha subunit contained a site for ADP-ribosylation catalyzed by pertussis toxin. The alpha subunit was also recognized by antibodies specific for a common GTP-binding site of many mammalian alpha subunits or a carboxy-terminal ADP-ribosylation site of mammalian inhibitory G-alpha. An antibody raised against mammalian 36-/35-kDa beta subunits strongly reacted with the 37-kDa beta subunit of starfish G protein. The purified starfish G protein had a GTP-binding activity with a high affinity and displayed a low GTPase activity. The activity of the G protein serving as the substrate for pertussis-toxin-catalyzed ADP-ribosylation was inhibited by its association with a non-hydrolyzable GTP analogue. Thus, the starfish G protein appeared to be similar to mammalian G proteins at least in terms of its structure and properties of nucleotide binding and the pertussis toxin substrate. A possible role of the starfish G protein is also discussed in the signal transduction between 1-MA receptors and reinitiation of meiosis with germinal vesicle breakdown.  相似文献   

12.
The binding of nucleoside triphosphates to rabbit muscle phosphofructokinase has been determined in 0.05 M phosphate buffers by changes in intrinsic protein fluorescence and by direct binding measurements. These experiments have been performed over a wide range of pH, temperature, and effector concentration. Quenching of protein fluorescence is shown to measure binding of nucleotides to a site which is not the active site but rather a site responsible for inhibition of the kinetic activity. This site is relatively specific for either ATP or MgATP with free ATP binding about 10-fold more tightly than MgATP. A model to describe binding to this site as a function of pH and temperature is proposed. This model assumes that the apparent affinity for ATP is determined by protonation of two ionizable groups (per subunit) and that ATP binds exclusively to protonated enzyme forms. Several ligands which affect the apparent affinity for nucleotide binding at the inhibitory site act by shifting the apparent pK of the ionizable groups. NH4+ and citrate do not influence nucleotide binding to the inhibitory site. At pH 6.9 in 0.05 M phosphate, low concentrations of MgATP or MgGTP enhance the protein fluorescence due to binding at the active site. The fluorescence studies and direct binding studies show that there is one active site and one inhibitory site per subunit. As described elsewhere (Pettigrew, D. W., and Frieden, C. (1978) J. Biol. Chem. 253, 3623-3627), there is a third nucleotide binding site on each subunit which is specific for cAMP, AMP, and ADP.  相似文献   

13.
Hong S  Pedersen PL 《Proteins》2003,51(2):155-161
The mitochondrial adenosine triphosphate (ATP) synthase is located in the inner membrane and consists of at least 16 subunit types in animals, one of which is subunit e, the function of which is not clearly defined. A highly homologous protein is located in the nucleus and named progesterone receptor binding protein (RBF), to designate its role in this organelle. In addition, the expression level of subunit e in mammalian cells fluctuates greatly and is induced by certain carcinogens and elevated in liver cancers. Because these previous observations suggested to us that subunit e may play multifunctional regulatory roles, we employed a bioinformatic approach to test this view. First, from sequence alignment studies, secondary structure analyses, and basic local alignment search tool (BLAST) searches, we concluded that mitochondrial subunit e and the homologous nuclear protein RBF are most likely the same protein. Second, we examined the known sequence and structure of one of the most common multifunctional cell regulatory proteins, the 14-3-3 protein, involved in phosphopeptide binding, and deduced that it has an apparent binding motif (-KX(6)R---RY-). Third, from careful examination of the conserved residues within all subunit e sequences in the database, we discovered that this protein has a comparable binding motif (-RY---KX(6)R-). Finally, in a BLAST search for additional homologs of subunit e, we found a human brain protein, KIAA1578, the C-terminal 30 amino acids of which are identical to those of human subunit e. This protein also contains a potential phosphopeptide binding motif. In summary, these studies provide support for the view that subunit e is a multifunctional cell regulator involved in cell signaling, and implicate the involvement of the KIAA1578 protein in cell signaling as well. These studies suggest also that, while functioning as a subunit of mitochondrial ATP synthases, subunit e may help regulate these complexes by binding to phosphopeptides within one or more of the other subunit types.  相似文献   

14.
A monoclonal antibody specific for Escherichia coli ribosomal protein L16 was prepared to test its effects on ribosome function and to locate L16 by immunoelectron microscopy. The antibody recognized L16 in 50 S subunits, but not in 70 S ribosomes. It inhibited association of ribosomal subunits at 10 mM Mg2+, but not at 15 mM Mg2+. Poly(U)-directed polyphenylalanine synthesis and peptidyltransferase activities were completely inhibited when the L16 antibody was bound to 50 S subunits at a molar ratio of 1. There was no inhibitory effect on the binding of elongation factors or on the associated GTPase activities. Fab fragments of the antibody gave the same result as the intact antibody. Chemical modification of the single histidine (His13) by diethyl pyrocarbonate destroyed antibody binding. Electron microscopy of negatively stained antibody subunit complexes showed antibody binding beside the central protuberance of the 50 S particle on the side away from the L7/L12 stalk and on or near the interface between the two subunits. This site of antibody binding is fully consistent with its biochemical effects that indicate that protein L16 is essential for the peptidyltransferase activity activity of protein biosynthesis and is at or near the subunit interface.  相似文献   

15.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

16.
The human regulatory complement component C4b-binding protein (C4BP) circulates in plasma either as a free protein or in a bimolecular complex with the vitamin K-dependent protein S. The major form of C4BP is composed of 7 identical, disulfide-linked 70 kDa subunits (alpha-chains), the arrangement of which gives the C4BP molecule a spider-like appearance. Recently, we identified a unique 45 kDa subunit (beta-chain) in C4BP. We have now isolated a subpopulation of C4BP, which does not bind protein S. This C4BP species, which had a molecular weight slightly lower than that of the predominant form, was found to lack the beta-chain. Another lower molecular weight form of C4BP was also purified. It contained the beta-chain and was efficient in binding protein S. Its subunit composition was judged to comprise six alpha-chains and one beta-chain. These results indicate C4BP in plasma to be heterogeneous at a molecular level vis-a-vis subunit composition and/or protein S binding ability and provide support for the concept that the beta-chain of C4BP contains the single protein S binding site.  相似文献   

17.
Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.  相似文献   

18.
Intracellular trafficking of ionotropic glutamate receptors is controlled by multiple discrete determinants in receptor subunits. Most such determinants have been localized to the cytoplasmic carboxyl-terminal domain, but other domains in the subunit proteins can play roles in modulating receptor surface expression. Here we demonstrate that formation of an intact glutamate binding site also acts as an additional quality-control check for surface expression of homomeric and heteromeric kainate receptors. A key ligand-binding residue in the KA2 subunit, threonine 675, was mutated to either alanine or glutamate, which eliminated affinity for the receptor ligands kainate and glutamate. We found that plasma membrane expression of heteromeric GluR6/KA2(T675A) or GluR6/KA2(T675E) kainate receptors was markedly reduced compared with wild-type GluR6/KA2 receptors in transfected HEK 293 and COS-7 cells and in cultured neurons. Surface expression of homomeric KA2 receptors lacking a retention/retrieval determinant (KA2-R/A) was also reduced upon mutation of Thr-675 and elimination of the ligand binding site. KA2 Thr-675 mutant subunits were able to co-assemble with GluR5 and GluR6 subunits and were degraded at the same rate as wild-type KA2 subunit protein. These results suggest that glutamate binding and associated conformational changes are prerequisites for forward trafficking of intracellular kainate receptors following multimeric assembly.  相似文献   

19.
The structures of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha3beta2 model to identify beta2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha3beta2 nAChR by two-electrode voltage clamp analysis. Although a beta2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta2-F117A, beta2-V109A, and beta2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta2-F117A mutant was combined with the alpha4 instead of the alpha3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta2-F117A, beta2-V109A, and beta2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha3beta2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.  相似文献   

20.
Ramachandran S  Cerione RA 《Biochemistry》2004,43(27):8778-8786
The GTP-binding protein (G protein), transducin, serves as a key molecular switch in vertebrate vision through the tight regulation of its GTP-binding (activation)/GTP hydrolytic (deactivation) cycle by the photoreceptor rhodopsin. To better understand the structure-function characteristics of transducin activation, we have set out to identify spectroscopic probes that bind to the guanine nucleotide-binding site of this G protein and maintain its ability to interact with its specific cellular target/effector, the cyclic GMP phosphodiesterase (PDE). In this study, we describe the characterization of a fluorescently labeled GTP analogue, BODIPY-FL GTPgammaS (BOD-GTPgammaS), that binds to the alpha subunit of transducin (alpha(T)) in a rhodopsin- and Gbetagamma-dependent manner, similar to the binding of GTP or GTPgammaS, with an apparent dissociation constant of 100 nM. The rhodopsin-dependent binding of BOD-GTPgammaS to alpha(T) is slow, relative to the rate of binding of GTPgammaS, particularly under conditions where rhodopsin must act catalytically to stimulate the exchange of BOD-GTPgammaS for GDP on multiple alpha(T) subunits. This reflects a slower rate of dissociation of rhodopsin and Gbetagamma from alpha(T)-BOD-GTPgammaS complexes, relative to their rates of dissociation from alpha(T)-GTPgammaS. The binding of BOD-GTPgammaS occurs without a change in the intrinsic tryptophan fluorescence of alpha(T), indicating that only a subtle movement of the Switch 2 domain on alpha(T) accompanies the binding of this GTPgammaS analogue. Nevertheless, the BOD-GTPgammaS-bound alpha(T) subunit is able to bind with high affinity to the recombinant, purified gamma subunit of PDE (gamma(PDE)) labeled with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS (K(d) approximately 13 nM)), as well as bind to and stimulate the activity of PDE, albeit less efficiently compared to alpha(T)-GTPgammaS. Taken together, these findings suggest that the binding of BOD-GTPgammaS to transducin causes it to adopt a distinct conformation that appears to be intermediate between the inactive and fully active states of alpha(T), and this fluorescent nucleotide analogue can be used as a reporter group to characterize the interactions of alpha(T) in this conformational state with its biological target/effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号