首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extraction of a relatively large molecular weight protein, bovine serum albumin (BSA), using nano-sized reverse micelles of nonionic surfactant polyoxyethylene p-t-octylphenol (Triton-X-100) is attempted for the first time. Suitability of reverse micelles of anionic surfactant sodium bis (2-ethyl hexyl) sulfosuccinate (AOT) and Triton-X-100/AOT mixture in organic solvent toluene for BSA extraction is also investigated. Although, the size of the Triton-X-100 reverse micelle in toluene is large enough to host BSA molecule in the hydraulic core, the overall extraction efficiency is found to be low, which may be due to lack of strong driving force. AOT/toluene system resulted in complete forward extraction at aqueous pH 5.5 and a surfactant concentration of 160 mM. The back extraction with aqueous phase (pH 5.5) resulted in 100% extraction of BSA from the organic phase. The addition of Triton-X-100 to AOT reduced the extraction efficiency of AOT reverse micelles, which may be attributed to reduced hydrophobic interaction. The circular dichroism (CD) spectrum of BSA extracted using AOT/toluene reverse micelles indicated the structural stability of the protein extracted.  相似文献   

2.
The constrained photophysics of intramolecular charge transfer (ICT) probe 4-(dimethylamino)cinnamic acid (DMACA) was studied in different surfactant systems as well as in presence of model water soluble protein bovine serum albumin (BSA). Binding of the probe in ionic micelles like sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) causes an increase in ICT fluorescence intensity, whereas, in non-ionic TritonX-100 (TX-100) the intensity decreases with a concomitant increase in emission from locally excited (LE) state. The observations were explained in terms of the different binding affinity, location of the probe and also the nature of specific hydrogen bonding interaction in the excited state nonradiative relaxation process of DMACA. The ICT fluorescence emission yield decreases in BSA due to the locking in of the probe buried in the hydrophobic pocket of the protein structure. SDS induced uncoiling of protein and massive cooperative binding between BSA and SDS is manifested by the release of probe molecules in relatively free aqueous environment.  相似文献   

3.
Micelles of lysomyristoylphosphatidylcholine (LMPC) and mixed micelles of LMPC with anionic detergent sodium dodecyl sulfate (SDS) have been characterized by spin-probe-partitioning electron paramagnetic resonance (SPPEPR) and time-resolved fluorescence quenching (TRFQ) experiments. SPPEPR is a novel new method to study structure and dynamics in lipid assemblies successfully applied here for the first time to micelles. Several improvements to the computer program used to analyze SPPEPR spectra have been incorporated that increase the precision in the extracted parameters considerably from which micelle properties such as effective water concentration and microviscosity may be estimated. In addition, with this increased precision, it is shown that it is feasible to study the rate of transfer of a small spin probe between micelles and the surrounding aqueous phase by SPPEPR. The rate of transfer of the spin probe di-tert-butyl nitroxide (DTBN) and the activation energy of the transfer process in LMPC and LMPC-SDS micelles have been determined with high precision. The rate of transfer increases with temperature and SDS molar fraction in mixed micelles, while it remains constant with LMPC concentration in pure LMPC micelles. The activation energy of DTBN transfer in pure lysophospholipid micelles does not change with LMPC concentration while it decreases with the increasing molar fraction of SDS in mixed LMPC-SDS micelles. Both this decrease in activation energy and the increase in the rate of transfer are rationalized in terms of an increasing micelle surface area per molecule (decreasing compactness) as SDS molecules are added. This decreasing compactness as a function of SDS content is confirmed by TRFQ measurements showing an aggregation number that decreases from 122 molecules for pure LMPC micelles to 80 molecules for pure SDS micelles. The same increase in surface area per molecule is predicted to increase the effective water concentration in the polar shell of the micelles. This increase in hydration with SDS molar fraction is confirmed by measuring the effective water concentration in the polar shell of the micelles from the hyperfine spacing of DTBN. This work demonstrates the potential to design mixed lysophospholipid surfactant micelles with variable physicochemical properties. Well-defined micellar substrates, in terms of their physicochemical properties, may improve the studies of protein structure and enzyme kinetics.  相似文献   

4.
A model for the mechanism of protein precipitation by caprylic acid (CA) is developed on the basis of quantitative assays of precipitation with bovine serum albumin (BSA) and CA at different concentrations. It was found that the effect of CA is due to direct interaction with the precipitating protein. Maximum precipitation was achieved when the mass ratio of CA-BSA was close to 1, equivalent to about 450 CA molecules per molecule of BSA. This value was confirmed by optimizing the CA purification of immunoglobulins from equine blood plasma. With a sample diluted 1:1, it was found that CA at a final concentration of 3.5% is optimal to obtain immunoglobulins essentially free of albumin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is proposed that CA binds to specific sites of the protein, thereby inducing partial unfolding of the protein, which exposes additional binding sites. More CA molecules incorporate into all sites in the form of mixed micelles. Thus, the interfacial protein surface becomes highly hydrophobic and increases protein-protein attraction, causing association and precipitation of the macromolecular complexes.  相似文献   

5.
The protein-surfactant system constituted by bovine serum albumin (BSA) and N-decanoyl-N-methylglucamide (MEGA-10) has been studied by using surface tension, steady-state fluorescence, and dynamic light scattering measurements. It was found that the presence of protein delays the surfactant aggregation, which was interpreted as a sign of binding between surfactant and protein. Binding studies were carried out by two different methods. First, a treatment based on surface tension measurements was used to obtain information on the number of surfactant molecules bound per protein molecule under saturation conditions. Second, the binding curve for the BSA/MEGA-10 system was determined by examining the behavior of the intrinsic BSA fluorescence upon the surfactant addition. Both approaches indicate that the binding process is essentially cooperative in nature. The results of the aggregation numbers of MEGA-10 micelles, as well as those of resonance energy transfer from tryptophan residues to 8-anilinonaphthalene-1-sulfonate, corroborate the formation of micelle-like aggregates of surfactants, smaller than the free micelles, adsorbed on the protein surface. The dynamic light scattering results were not conclusive, in the sense that it was not possible to discriminate between protein-surfactant complexes and free micelles. However, the overall results suggest the formation of "pearl necklace" complexes in equilibrium with the free micelles of the surfactant.  相似文献   

6.
Biomolecules have been widely investigated as potential therapeutics for various diseases. However their use is limited due to rapid degradation and poor cellular uptake in vitro and in vivo. To address this issue, we synthesized a new nano-carrier system comprising of cholic acid-polyethylenimine (CA-PEI) copolymer micelles, via carbodiimide-mediated coupling for the efficient delivery of small interfering ribonucleic acid (siRNA) and bovine serum albumin (BSA) as model protein. The mean particle size of siRNA- or BSA-loaded CA-PEI micelles ranged from 100–150 nm, with zeta potentials of +3-+11 mV, respectively. Atomic force, transmission electron and field emission scanning electron microscopy demonstrated that the micelles exhibited excellent spherical morphology. No significant morphology or size changes were observed in the CA-PEI micelles after siRNA and BSA loading. CA-PEI micelles exhibited sustained release profile, the effective diffusion coefficients were successfully estimated using a mathematically-derived cylindrical diffusion model and the release data of siRNA and BSA closely fitted into this model. High siRNA and BSA binding and loading efficiencies (95% and 70%, respectively) were observed for CA-PEI micelles. Stability studies demonstrated that siRNA and BSA integrity was maintained after loading and release. The CA-PEI micelles were non cytotoxic to V79 and DLD-1 cells, as shown by alamarBlue and LIVE/DEAD cell viability assays. RT-PCR study revealed that siRNA-loaded CA-PEI micelles suppressed the mRNA for ABCB1 gene. These results revealed the promising potential of CA-PEI micelles as a stable, safe, and versatile nano-carrier for siRNA and the model protein delivery.  相似文献   

7.
Water molecules in hydrophobic biological cleft/cavities are of contemporary interest for the biomolecular structure and molecular recognition of hydrophobic ligands/drugs. Here, we have explored picosecond-resolved solvation dynamics of water molecules and associated polar amino acids in the hydrophobic cleft around Cys-34 position of Endogenous Serum Albumin (ESA). While site selective acrylodan labeling to Cys-34 allows us to probe solvation in the cleft, Förster resonance energy transfer (FRET) from intrinsic fluorescent amino acid Trp 214 to the extrinsic acrylodan probes structural integrity of the protein in our experimental condition. Temperature dependent solvation in the cleft clearly shows that the dynamics follows Arrhenius type behavior up to 60 °C, after which a major structural perturbation of the protein is evident. We have also monitored polarization gated dynamics of the acrylodan probe and FRET from Trp 214 to acrylodan at various temperatures. The dynamical behavior of the immediate environments around the probe acrylodan in the cleft has been compared with a model biomimetic cavity of a reverse micelle (w0 = 5). Using same fluorescent probe of acrylodan, we have checked the structural integrity of the model cavity at various temperatures using picosecond-resolved FRET from Trp to acrylodan in the cavity. We have also estimated possible distribution of donor-acceptor distances in the protein and reverse micelles. Our studies reveal that the energetics of the water molecules in the biological cleft is comparable to that in the model cavity indicating a transition from bound state to quasibound state, closely consistent with a recent MD simulation study.  相似文献   

8.
Structural modification through binding interaction of plasma protein bovine serum albumin (BSA) with an extrinsic charge transfer fluorophore 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) and its response to external perturbation due to interactions with surfactant sodium dodecyl sulphate (SDS) have been explored at physiological pH by steady state absorption, emission, fluorescence anisotropy, red edge excitation shift, far-UV circular dichroism and time resolved spectral measurements in combination with Molecular Docking and Molecular Dynamics (MD) simulation. Interaction of the probe with BSA is reflected by a small change in protein secondary structure with fluorescence enhancement and blue shift of probe emission. Molecular docking studies revealed that the probe binds to the hydrophobic cavity of sub-domain IIA of BSA. The distance for energy transfer from the tryptophan of BSA to the bound DMAPPDA measured by Fluorescence Resonance Energy Transfer is in good agreement with the molecular docking results. MD simulation predicts stabilization of the complex with respect to the bare molecule. Interaction of BSA and SDS with DMAPPDA supports the movement of the probe from hydrophilic free water region to a more restricted hydrophobic zone inside the protein.  相似文献   

9.
We observe folding of horse heart cytochrome c in various environments including nano-compartments (micelles and reverse micelles). Using picosecond-resolved Förster resonance energy transfer (FRET) dynamics of an extrinsic covalently attached probe dansyl (donor) at the surface of the protein to a heme group (acceptor) embedded inside the protein, we measured angstrom-resolved donor–acceptor distances in the environments. The overall structural perturbations of the protein revealed from the FRET experiments are in close agreement with our circular dichroism (CD) and dynamic light scattering (DLS) studies on the protein in a variety of solution conditions. The change of segmental motion of the protein due to imposed restriction in the nano-compartments compared to that in bulk buffer is also revealed by temporal fluorescence anisotropy of the dansyl probe.  相似文献   

10.
S F Scarlata  M Rosenberg 《Biochemistry》1990,29(44):10233-10240
We have investigated the responsiveness of micelle and bilayer surfaces to changes in bulk pH through titrations, and to changes in lipid packing through the application of high hydrostatic pressure using two fluorescent, pH-sensitive surface probes. In micelles, the surface is very sensitive to bulk pH while in phosphatidylcholine and phosphatidic acid bilayers the surface charge changed little through a large pH region. Application of pressure on micelles causes proton dissociation due to the volume reduction achieved from the contraction of water around the charges (electrostriction). However, in bilayers, the effect of electrostriction is greatly reduced, most likely due to the energy needed to expand and hydrate the surface. The sign and amount of change in dissociation the probe undergoes with pressure depend on the initial degree of probe dissociation, which is in turn dependent on the particular surface rather than the charge of the lipid head groups comprising the bilayer. This finding may limit the use of fluorescent probes to determine the exact surface potential. By assuming the change in delta V for proton dissociation from the probe is constant for a given pH, we can calculate the changes in local pH that occur under pressure relative to a neutral or uncharged system. In doing so, we find that the local pH around the probe in bilayers changes very little (approximately 0.1 pH unit or less) in the first 2000 bars. Also, if pressure data are coupled with titration curves, we can determine the change that the bulk pH must undergo to produce the observed change in dissociation seen under pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.

Background

Reactors found in nature can be described as micro-heterogeneous systems, where media involved in each micro-environment can behave in a markedly different way compared with the properties of the bulk solution. The presence of water molecules in micro-organized assemblies is of paramount importance for many chemical processes, ranging from biology to environmental science. Self-organized molecular assembled systems are frequently used to study dynamics of water molecules because are the simplest models mimicking biological membranes. The hydrogen bonds between sucrose and water molecules are described to be stronger (or more extensive) than the ones between water molecules themselves. In this work, we studied the capability of sucrose moiety, attached to alkyl chains of different length, as a surface blocking agent at the water-interface and we compared its properties with those of polyethylenglycol, a well-known agent used for this purposes. Published studies in this topic mainly refer to the micellization process and the stability of mixed surfactant systems using glycosides. We are interested in the effect induced by the presence of sucrose monoesters at the interface (direct and reverse micelles) and at the palisade (mixtures with Triton X-100). We believe that the different functional group (ester), the position of alkyl chain (6-O) and the huge capability of sucrose to interact with water will dramatically change the water structuration at the interface and at the palisade, generating new possibilities for technological applications of these systems.

Results

Our time resolved and steady state fluorescence experiments in pure SEs micelles show that sucrose moieties are able to interact with a high number of water molecules promoting water structuration and increased viscosity. These results also indicate that the barrier formed by sucrose moieties on the surface of pure micelles is more effective than the polyoxyethylene palisade of Triton X-100. The fluorescence quenching experiments of SEs at the palisade of Triton X-100 micelles indicate a blocking effect dependent on the number of methylene units present in the hydrophobic tail of the surfactant. A remarkable blocking effect is observed when there is a match in size between the hydrophobic regions forming the apolar core (lauryl SE/ Triton X-100). This blocking effect disappears when a mismatch in size between hydrophobic tails, exists due to the disturbing effect on the micelle core.  相似文献   

12.
《Biophysical journal》2019,116(9):1682-1691
The dynamics of phosphocholine and maltoside micelles, detergents frequently used for membrane protein structure determination, were investigated using electron paramagnetic resonance of spin probes doped into the micelles. Specifically, phosphocholines are frequently used detergents in NMR studies, and maltosides are frequently used in x-ray crystallography structure determination. Beyond the structural and electrostatic differences, this study aimed to determine whether there are differences in the local chain dynamics (i.e., fluidity). The nitroxide probe rotational dynamics in longer chain detergents is more restricted than in shorter chain detergents, and maltoside micelles are more restricted than phosphocholine micelles. Furthermore, the micelle microviscosity can be modulated with mixtures, as demonstrated with mixtures of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate with n-dodecylphosphocholine, n-tetradecylphosphocholine, n-decyl-β-D-maltoside, or n-dodecyl-β-D-maltoside. These results indicate that observed differences in membrane protein stability in these detergents could be due to fluidity in addition to the already determined structural differences.  相似文献   

13.
The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polymer aggregates were observed in the case of E 18B 10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E 18B 10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E 18B 10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.  相似文献   

14.
The structure and flexibility of the outer membrane protein X (OmpX) in a water-detergent solution and in pure water are investigated by molecular dynamics simulations on the 100-ns timescale and compared with NMR data. The simulations allow for an unbiased determination of the structure of detergent micelles and the protein-detergent mixed micelle. The short-chain lipid dihexanoylphosphatidylcholine, as a detergent, aggregates into pure micelles of approximately 18 molecules, or alternatively, it binds to the protein surface. The detergent binds in the form of a monolayer ring around the hydrophobic beta-barrel of OmpX rather than in a micellar-like oblate; approximately 40 dihexanoylphosphatidylcholine lipids are sufficient for an effective suppression of water from the surface of the beta-barrel region. The phospholipids bind also on the extracellular, protruding beta-sheet. Here, polar interactions between charged amino acids and phosphatidylcholine headgroups act as condensation seed for detergent micelle formation. The polar protein surface remains accessible to water molecules. In total, approximately 90-100 detergent molecules associate within the protein-detergent mixed micelle, in agreement with experimental estimates. The simulation results indicate that OmpX is not a water pore and support the proposed role of the protruding beta-sheet as a "fishing rod".  相似文献   

15.
With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions.  相似文献   

16.
Linezolid, one of the reserve antibiotic of oxazolidinone class has wide range of antimicrobial activity. Here we have conducted a fundamental study concerning the dynamics of its interaction with bovine serum albumin (BSA), and the post binding modification of the later by employing different spectroscopic (absorption, fluorescence and circular dichroism (CD) spectroscopy) and molecular docking tools. Gradual quenching of the tryptophan (Trp) fluorescence upon addition of linezolid to BSA confirms their interaction. Analysis of fluorescence quenching at different temperature indicates that the interaction is made by static complex formation and the BSA has one binding site for the drug. The negative Gibbs energy change (ΔG0), and positive values of enthalpy change (ΔH0) and entropy change (ΔS0) strongly suggest that it is an entropy driven spontaneous and endothermic reaction. The reaction involves hydrophobic pocket of the protein, which is further stabilized by hydrogen bonding and electrostatic interactions as evidenced from 8-anilino-1-napthalene sulfonic acid, sucrose and NaCl binding studies. These findings also support the molecular docking study using AutoDock 4.2. The influence of this interaction on the secondary structure of the protein is negligible as evidenced by CD spectroscopy. So, from these findings, we conclude that linezolid interacts with BSA in 1:1 ratio through hydrophobic, hydrogen bonding and ionic interactions, and this may not affect the secondary structure of the protein.  相似文献   

17.
Immunogenicity of soluble protein antigens in the complexes with synthetic polyions may be regarded as depending both on the nature of polymer carrier and the structure of the protein-polyelectrolyte complex. The immunogenicity of stable soluble complexes of ovalbumin (OA) with polycation - quaternized poly-4-vinylpyridine (C-1) and copolymer of acrylic acid and 2-methyl-5-vinylpyridine (C-2) have been evaluated. Immunization of mice by C-1 have induced a vigorous formation of the anti-OA IgG antibodies and IgE homocytotropic antibodies, while immunogenicity of OA in C-2 was comparable with that of OA alone. The analysis of the structural-chemical features of the complexes investigated has shown that enhanced immunogenicity of C-1 may be due to (1) the non-homogeneous distribution of protein globulae among polycation macromolecules and to (2) the formation of complex with an asymmetrical structure, to (3) the high ability of C-1 to adsorb on a surface of the lymphoid cells and to induce a formation of intercellular aggregates. An enhancing of a stability and a size of C-2 in the presence of Cu2+ shows no influence on a immunogenicity of OA. An immunogenicity of both types of complexes does not depend upon the access of determinants of OA to antibodies so far as it has been shown that complex formation in both cases are not accompanied by an alteration of antigenicity and allergenicity of OA.  相似文献   

18.
The buried surface area (BSA), which measures the size of the interface in a protein–protein complex may differ from the accessible surface area (ASA) lost upon association (which we call DSA), if conformation changes take place. To evaluate the DSA, we measure the ASA of the interface atoms in the bound and unbound states of the components of 144 protein–protein complexes taken from the Protein–Protein Interaction Affinity Database of Kastritis et al. (2011). We observe differences exceeding 20%, and a systematic bias in the distribution. On average, the ASA calculated in the bound state of the components is 3.3% greater than in their unbound state, and the BSA, 7% greater than the DSA. The bias is observed even in complexes where the conformation changes are small. An examination of the bound and unbound structures points to a possible origin: local movements optimize contacts with the other component at the cost of internal contacts, and presumably also the binding free energy.  相似文献   

19.
Sun C  Yang J  Wu X  Huang X  Wang F  Liu S 《Biophysical journal》2005,88(5):3518-3524
The interaction of bovine serum albumin (BSA) with cationic surfactant cetylpyridinium bromide (CPB) in aqueous solution (pH 7.00) was studied quantitatively with ultraviolet (UV)-visible, far-UV, and near-UV circular dichroism, fluorescence, small angle x-ray scattering, and nuclear magnetic resonance measurement. It was found that CPB at low and high concentrations could induce the unfolding and refolding of BSA, respectively. We suggest that in the unfolding process, there existed BSA-CPB complex with the "necklace and bead" structure in which the unfolded BSA wrapped around CPB micelles, and that the hydrophobic interaction between the complexes led to the formation of large aggregates. The aromatic headgroup of CPB interacted with the tryptophan residues of BSA, resulting in the aromatic ring stacking between BSA and CPB. During the refolding process, the BSA molecule was penetrated into the rod micelle of CPB and the hydrophobic moiety of the BSA molecule was exposed outside while its hydrophilic part was hidden inside, thereby disrupting the aromatic ring stacking.  相似文献   

20.
This work studies specific interactions between a small globular protein and a highly flexible, branched polysaccharide using differential scanning calorimetry (DSC), circular dichroism (CD), fluorescence, and turbidimetry measurements. It uses the system water/bovine serum albumin (BSA)/dextran (D 2000) as a model. Dextran molecules are able to form interpolymeric complexes with BSA in water at both low and high temperatures if the polysaccharide is in excess and if the protein exists in its associated state. It leads to a partial destabilization of the secondary and tertiary structures of the protein and an additional exposure of the hydrophobic tryptophan residues to the surface of globule. If the total concentration of biopolymers in the mixture is high enough, the stability of the protein molecules with respect to unfolding and thermoaggregation is significantly decreased as a result of an increase in the protein hydrophobicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号