首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.   总被引:25,自引:0,他引:25  
We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.  相似文献   

2.
3.
Floral transition should be strictly regulated because it is one of the most critical developmental processes in plants. Arabidopsis terminal flower 2 (tfl2) mutants show an early-flowering phenotype that is relatively insensitive to photoperiod, as well as several other pleiotropic phenotypes. We found that the early flowering of tfl2 is caused mainly by ectopic expression of the FLOWERING LOCUS T (FT) gene, a floral pathway integrator. Molecular cloning of TFL2 showed that it encodes a protein with homology to heterochromatin protein 1 (HP1) of animals and Swi6 of fission yeast. TFL2 protein localizes in subnuclear foci and expression of the TFL2 gene complemented yeast swi6(-) mutants. These results suggested that TFL2 might function as an HP1 in Arabidopsis: Gene expression analyses using DNA microarrays, however, did not show an increase in the expression of heterochromatin genes in tfl2 mutants but instead showed the upregulation of the floral homeotic genes APETALA3, PISTILLATA, AGAMOUS and SEPALLATA3. The pleiotropic phenotype of the tfl2 mutant could reflect the fact that TFL2 represses the expression of multiple genes. Our results demonstrate that despite its homology to HP1, TFL2 is involved in the repression of specific euchromatin genes and not heterochromatin genes in Arabidopsis.  相似文献   

4.
5.
The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation.   总被引:3,自引:0,他引:3  
A screen for mutations affecting flower formation was carried out and several filamentous flower (fil) alleles were identified. In fil mutants, floral primordia occasionally give rise to pedicels lacking flowers at their ends. This defect is dramatically enhanced in fil rev double mutants, in which every floral primordium produces a flowerless pedicel. These data suggest that the FIL and REV genes are required for an early step of flower formation, possibly for the establishment of a flower-forming domain within the floral primordium. The FIL gene is also required for establishment of floral meristem identity and for flower development. During flower development, the FIL gene is required for floral organ formation in terms of the correct numbers and positions; correct spatial activity of the AGAMOUS, APETALA3, PISTILLATA and SUPERMAN genes; and floral organ development.  相似文献   

6.
7.
8.
9.
The time of flowering in Arabidopsis is controlled by multiple endogenous and environmental signals. Some of these signals promote the onset of flowering, whereas others repress it. We describe here the isolation and characterization of two allelic mutations that cause early flowering and define a new locus, EARLY BOLTING IN SHORT DAYS (EBS). Acceleration of flowering time in the ebs mutants is especially conspicuous under short-day photoperiods and results from a reduction of the adult vegetative phase of the plants. In addition to the early flowering phenotype, ebs mutants show a reduction in seed dormancy, plant size, and fertility. Double mutant analysis with gibberellin-deficient mutants indicates that both the early-flowering and the precocious-germination phenotypes require gibberellin biosynthesis. Analysis of the genetic interactions among ebs and several mutations causing late flowering shows that the ft mutant phenotype is epistatic over the early flowering of ebs mutants, suggesting that the precocious flowering of ebs requires the FT gene product. Finally, the ebs mutation causes an increase in the level of expression of the floral homeotic genes APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) and partially rescues the mutant floral phenotype of leafy-6 (lfy-6) mutants. These results suggest that EBS participates as a negative regulator in developmental processes such as germination, flowering induction, and flower organ specification.  相似文献   

10.
H Huang  H Ma 《The Plant cell》1997,9(2):115-134
A novel gene that regulates floral meristem activity and controls floral organ number was identified in Arabidopsis and is designated FON1 (for FLORAL ORGAN NUMBER1). The fon1 mutants exhibit normal vegetative development and produce normal inflorescence meristems and immature flowers before stage 6. fon1 flowers become visibly different from wild-type flowers at stage 6, when the third-whorl stamen primordia have formed. The fon1 floral meristem functions longer than does that of the wild type: after the outer three-whorl organ primordia have initiated, the remaining central floral meristem continues to produce additional stamen primordia interior to the third whorl. Prolonged fon1 floral meristem activity also results in an increased number of carpels. The clavata (clv) mutations are known to affect floral meristem activity. We have analyzed the clv1 fon1, clv2 fon1, and clv3 fon1 double mutants. These double mutants all have similar phenotypes, with more stamens and carpels than either fon1 or clv single mutants. This indicates that FON1 and CLV genes function in different pathways to control the number of third- and fourth-whorl floral organs. In addition, to test for possible interactions between FON1 and other floral regulatory genes, we have constructed and analyzed the relevant double mutants. Our results suggest that FON1 does not interact with TERMINAL FLOWER1, APETALA1, APETALA2, or UNUSUAL FLORAL ORGAN. In contrast, normal LEAFY function is required for the expression of fon1 phenotypes. In addition, FON1 and AGAMOUS both seem to affect the domain of APETALA3 function, which also affects the formation of stamen-carpel chimera due to fon1 mutations. Finally, genetic analysis suggests that FON1 interacts with SUPERMAN, which also regulates floral meristem activity.  相似文献   

11.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:18,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

12.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

13.
14.
Histone H1 is an abundant component of eukaryotic chromatin that is thought to stabilize higher-order chromatin structures. However, the complete knock-out of H1 genes in several lower eukaryotes has no discernible effect on their appearance or viability. In higher eukaryotes, the presence of many mutually compensating isoforms of this protein has made assessment of the global function of H1 more difficult. We have used double-stranded RNA (dsRNA) silencing to suppress all the H1 genes of Arabidopsis thaliana. Plants with a >90% reduction in H1 expression exhibited a spectrum of aberrant developmental phenotypes, some of them resembling those observed in DNA hypomethylation mutants. In subsequent generations these defects segregated independently of the anti-H1 dsRNA construct. Downregulation of H1 genes did not cause substantial genome-wide DNA hypo- or hypermethylation. However, it was correlated with minor but statistically significant changes in the methylation patterns of repetitive and single-copy sequences, occurring in a stochastic manner. These findings reveal an important and previously unrecognized link between linker histones and specific patterns of DNA methylation.  相似文献   

15.
X Shen  Z He  H Li  C Yao  Y Zhang  L He  S Li  J Huang  Z Guo 《PloS one》2012,7(9):e44822

Background

Aberrant DNA methylation plays important roles in carcinogenesis. However, the functional significance of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis currently remain unclear.

Principal Findings

Based on genome-wide methylation data for five cancer types, we showed that genes with promoter hypermethylation were highly consistent in function across different cancer types, and so were genes with promoter hypomethylation. Functions related to “developmental processes” and “regulation of biology processes” were significantly enriched with hypermethylated genes but were depleted of hypomethylated genes. In contrast, functions related to “cell killing” and “response to stimulus”, including immune and inflammatory response, were associated with an enrichment of hypomethylated genes and depletion of hypermethylated genes. We also observed that some families of cytokines secreted by immune cells, such as IL10 family cytokines and chemokines, tended to be hypomethylated in various cancer types. These results provide new hints for understanding the distinct functional roles of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis.

Conclusions

Genes with promoter hypermethylation and hypomethylation are highly consistent in function across different cancer types, respectively, but these two groups of genes tend to be enriched in different functions associated with cancer. Especially, we speculate that hypomethylation of gene promoters may play roles in inducing immunity and inflammation disorders in precancerous conditions, which may provide hints for improving epigenetic therapy and immunotherapy of cancer.  相似文献   

16.
We isolated three alleles of an Arabidopsis thaliana gene named ROXY1, which initiates a reduced number of petal primordia and exhibits abnormalities during further petal development. The defects are restricted to the second whorl of the flower and independent of organ identity. ROXY1 belongs to a subgroup of glutaredoxins that are specific for higher plants and we present data on the first characterization of a mutant from this large Arabidopsis gene family for which information is scarce. ROXY1 is predominantly expressed in tissues that give rise to new flower primordia, including petal precursor cells and petal primordia. Occasionally, filamentous organs with stigmatic structures are formed in the second whorl of the roxy1 mutant, indicative for an ectopic function of the class C gene AGAMOUS (AG). The function of ROXY1 in the negative regulation of AG is corroborated by premature and ectopic AG expression in roxy1-3 ap1-10 double mutants, as well as by enhanced first whorl carpeloidy in double mutants of roxy1 with repressors of AG, such as ap2 or lug. Glutaredoxins are oxidoreductases that oxidize or reduce conserved cysteine-containing motifs. Mutagenesis of conserved cysteines within the ROXY1 protein demonstrates the importance of cysteine 49 for its function. Our data demonstrate that, unexpectedly, a plant glutaredoxin is involved in flower development, probably by mediating post-translational modifications of target proteins required for normal petal organ initiation and morphogenesis.  相似文献   

17.
18.
19.
We have recently isolated two Arabidopsis thaliana DNA hypomethylation mutations, identifying the DDM1 locus, that cause a 70% reduction in genomic 5-methylcytosine levels [1]. Here we describe further phenotypic and biochemical characterization of the ddm1 mutants. ddm1/ddm1 homozygotes exhibited altered leaf shape, increased cauline leaf number, and a delay in the onset of flowering when compared to non-mutant siblings in a segregating population. Our biochemical characterization investigated two possible mechanisms for DNA hypomethylation. In order to see if ddm1 mutations affect DNA methyltransferase function, we compared DNA methyltransferase activities in extracts from wild-type and ddm1 mutant tissues. The ddm1 mutant extracts had as much DNA methyltransferase activity as that of the wild-type for both the CpI and CpNpG substrates suggesting that the DDM1 locus does not encode a DNA methyltransferase. Moreover, the ddm1 mutations did not affect the intracellular level of S-adenosylmethionine, the methyl group donor for DNA methylation. The possibility that the DDM1 gene product functions as a modifier of DNA methylation is discussed.  相似文献   

20.
Gregis V  Sessa A  Colombo L  Kater MM 《The Plant cell》2006,18(6):1373-1382
Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish floral meristem identity. Here, we combine the two mutants to generate the agl24 svp double mutant. Analysis of flowering time revealed that svp is epistatic to agl24. Furthermore, when grown at 30 degrees C, the double mutant was severely affected in flower development. All four floral whorls showed homeotic conversions due to ectopic expression of class B and C organ identity genes. The observed phenotypes remarkably resembled the leunig (lug) and seuss (seu) mutants. Protein interaction studies showed that dimers composed of AP1-AGL24 and AP1-SVP interact with the LUG-SEU corepressor complex. We provide genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced. Our data suggest that MADS box proteins are involved in the recruitment of the SEU-LUG repressor complex for the regulation of AGAMOUS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号