首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinase phosphatase 3 (MKP3) is a specific regulator of extracellular signal-regulated protein kinase 2 (ERK2). Association of ERK2 with MKP3 results in a powerful increase in MKP3 phosphatase activity. To determine the molecular basis of the specific ERK2 recognition by MKP3 and the ERK2-induced MKP3 activation, we have carried out a systematic mutational and deletion analysis of MKP3. Using activation-based and competition-based assays, we are able to quantitatively evaluate the contributions that residues/regions within MKP3 make to ERK2 binding and ERK2-induced MKP3 activation. Our results show that recognition and activation of MKP3 by ERK2 involves multiple regions of MKP3. Thus, the kinase interaction motif (KIM; residues 61--75) in MKP3 plays a major role (135-fold) for high affinity ERK2 binding. The most important residue in the KIM sequence of MKP3 is Arg(65), which probably interacts with Asp(319) in ERK2. In addition to KIM, a unique sequence conserved in cytosolic MKPs (residues 161--177 in MKP3) also contributes to ERK2 binding (15-fold). However, these two regions are not essential for ERK2-induced MKP3 activation. A third ERK2 binding site is localized in the C terminus of MKP3 (residues 348--381). Although deletion of this region or mutation of the putative ERK specific docking sequence (364)FTAP(367) in this region reduces MKP3's affinity for ERK2 by less than 10-fold, this region is absolutely required for ERK2-induced MKP3 activation.  相似文献   

2.
The ability of heparin to block proliferation of vascular smooth muscle cells has been well documented. It is clear that heparin treatment can decrease the level of ERK activity in vascular smooth muscle cells that are sensitive to heparin. In this study, the mechanism by which heparin induces decreases in ERK activity was investigated by evaluating the dual specificity phosphatase, MKP‐1, in heparin treated cells. Heparin induced MKP‐1 synthesis in a time and concentration dependent manner. The time‐course of MKP‐1 expression correlated with the decrease in ERK activity. Over the same time frame, heparin treatment did not result in decreases in MEK‐1 activity which could have, along with constitutive phosphatase activity, accounted for the decrease in ERK activity. Antibodies against a heparin receptor also induced the synthesis of MKP‐1 along with decreasing ERK activity. Blocking either phosphatase activity or synthesis also blocked heparin‐induced decreases in ERK activity. Consistent with a role for MKP‐1, a nuclear phosphatase, heparin treated cells exhibited decreases in nuclear ERK activity more rapidly than cells not treated with heparin. The data support MKP‐1 as a heparin‐induced phosphatase that dephosphorylates ERK, decreasing ERK activity, in vascular smooth muscle cells. J. Cell. Biochem. 110: 382–391, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Although many stimuli activate extracellular signal-regulated kinases 1 and 2 (ERK1/2), the kinetics and compartmentalization of ERK1/2 signals are stimulus-dependent and dictate physiological consequences. ERKs can be inactivated by dual specificity phosphatases (DUSPs), notably the MAPK phosphatases (MKPs) and atypical DUSPs, that can both dephosphorylate and scaffold ERK1/2. Using a cell imaging model (based on knockdown of endogenous ERKs and add-back of wild-type or mutated ERK2-GFP reporters), we explored possible effects of DUSPs on responses to transient or sustained ERK2 activators (epidermal growth factor and phorbol 12,13-dibutyrate, respectively). For both stimuli, a D319N mutation (which impairs DUSP binding) increased ERK2 activity and reduced nuclear accumulation. These stimuli also increased mRNA levels for eight DUSPs. In a short inhibitory RNA screen, 12 of 16 DUSPs influenced ERK2 responses. These effects were evident among nuclear inducible MKP, cytoplasmic ERK MKP, JNK/p38 MKP, and atypical DUSP subtypes and, with the exception of the nuclear inducible MKPs, were paralleled by corresponding changes in Egr-1 luciferase activation. Simultaneous removal of all JNK/p38 MKPs or nuclear inducible MKPs revealed them as positive and negative regulators of ERK2 signaling, respectively. The effects of JNK/p38 MKP short inhibitory RNAs were not dependent on protein neosynthesis but were reversed in the presence of JNK and p38 kinase inhibitors, indicating DUSP-mediated cross-talk between MAPK pathways. Overall, our data reveal that a large number of DUSPs influence ERK2 signaling. Together with the known tissue-specific expression of DUSPs and the importance of ERK1/2 in cell regulation, our data support the potential value of DUSPs as targets for drug therapy.  相似文献   

4.
5.
Cellular senescence is characterized by impaired cell proliferation. We have previously shown that, relative to the young counterpart, senescent WI-38 human fibroblasts display a decreased abundance of active phosphorylated ERK (p-ERK) in the nucleus. We have tested the hypothesis that this is due to elevated levels of nuclear MAP kinase phosphatase (MKP) activity in senescent cells. Our results indicate that the activity and abundance of MKP-2 is increased in senescent fibroblasts, compared to their young counterparts. Further analysis indicates that it is MKP-2 protein, but not MKP-2 mRNA level, that is increased in senescent cells. This increase is the result of the increased stability of MKP-2 protein against proteolytic degradation. The degradation of MKPs was impaired by proteasome inhibitors both in young and old WI-38 cells, indicating that proteasome activity is involved in the degradation of MKPs. Finally, our results indicate that proteasome activity, in general, is diminished in senescent fibroblasts. Taken together, these data indicate that the increased level and activity of MKP-2 in senescent WI-38 cells are the consequence of impaired proteosomal degradation, and this increase is likely to play a significant role in the decreased levels of p-ERK in the nucleus of senescent cells.  相似文献   

6.
In response to oncogenic signals, cells have developed safe mechanisms to avoid transformation through activation of a senescence program. Upon v-H-Ras overexpression, normal cells undergo senescence through several cellular processes, including activation of the ERK1/2 pathway. Interestingly, the E1a gene from adenovirus 5 has been shown to rescue cells from senescence by a yet unknown mechanism. We investigated whether E1a was able to interfere with the ERK1/2 signaling pathway to rescue cells from v-H-Ras-mediated senescence. Our results show that, E1a overexpression blocks v-H-Ras-mediated ERK1/2 activation by two different and concomitant mechanisms. E1a through its ability to interfere with PKB/Akt activation induces the down-regulation of the PEA15 protein, an ERK1/2 nuclear export factor, leading to nuclear accumulation of ERK1/2. In addition to this, we show that E1a increases the expression of the inducible ERK1/2 nuclear phosphatases (MAPK phosphatases) MKP1/DUSP1 and DUSP5, which leads to ERK1/2 dephosphorylation. We confirmed our observations in the human normal diploid fibroblasts IMR90, in which we could also show that an E1a mutant, unable to bind retinoblastoma protein (pRb), cannot rescue cells from v-H-Ras-induced senescence. In conclusion, E1a is able to rescue from Ras-induced senescence by affecting ERK1/2 localization and phosphorylation.  相似文献   

7.
8.
In culture, nontransformed human diploid fibroblasts divide a limited number of times, resulting in a nonproliferating senescent cell culture which exhibits an altered pattern of gene expression. Previously we reported that an early event in the process of replicative senescence was an increase in the synthesis of two connective tissue degrading metalloproteinases, collagenase and stromelysin, and a decrease in the synthesis of the physiological inhibitor of those enzymes, tissue inhibitor of metalloproteinases-1 (TIMP-1). The cytokine TGF-β1 is known to regulate the expression of each of these three genes and to be synthesized and secreted by cultured human fibroblasts. This suggested the hypothesis that the age-specific modulation of collagenase, stromelysin, and TIMP-1 expression is the result of a change in TGF-β1 activity during replicative senescence. To test this hypothesis, the responses of early, mid, and late passage (presenescent) fibroblast cell cultures to a TGF-β neutralizing antibody were evaluated. In early passage cell cultures, exposure to TGF-β neutralizing antibody resulted in a significant increase in the expression of collagenase and stromelysin and decreased TIMP-1 expression. The antibody did not affect expression of either of those genes by late passage cell cultures, although late passage cultures did respond to added TGF-β1. Quantification of the levels of active TGF-β, using a growth inhibition assay, indicates that the level of active TGF-β1 is decreased during replicative senescence, supporting the conclusion that the modulation of collagenase, stromelysin, and TIMP-1 expression results from diminished TGF-β activity.  相似文献   

9.
Despite the understanding of the importance of mitogen-activated protein (MAP) kinase activation in the stimulation of growth, little is known about the role of MAP kinase regulation during contact inhibited growth control. To investigate the role of the MAP kinase extracellular signal-regulated kinase (ERK) during the transition to a contact inhibited state, cultures of normal fibroblasts (BJ) were grown to different stages of confluency. The levels of MAP kinase phosphatase (MKP) expression and the amount of active ERK and MAP ERK kinase (MEK) in these cultures were assessed through western blot analysis and were compared to fibrosarcoma cell cultures (HT-1080), which lack contact inhibition. In normal fibroblasts, the amounts of active MEK and ERK decline at contact inhibition, concurrently with a rise in MKP-1, MKP-2, and MKP-3 protein levels. In contrast, fibrosarcoma cells appear to lack density-dependent regulation of the ERK pathway. Additionally, altering the redox environment of fibrosarcoma cells to a less reducing state, as seen during contact inhibition, results in increased MKP-1 expression. Taken together, these results suggest that the altered redox environment upon contact inhibition may contribute to the regulation of ERK inactivation by MKPs.  相似文献   

10.
MAPK cascades can be negatively regulated by members of the MAPK phosphatase (MKP) family. However, how MKP activity is regulated is not well characterized. MKP-7, a JNK-specific phosphatase, possesses a unique COOH-terminal stretch (CTS) in addition to domains conserved among MKP family members. The CTS contains several motifs such as a nuclear localization signal, a nuclear export signal, PEST sequences, and a serine residue (Ser-446) that can be phosphorylated by activated ERK, suggesting an important regulatory role(s).(35)S-pulse labeling experiments indicate that the half-life of MKP-7 is 1.5 h, a period significantly elongated by deleting the CTS. We also show that overexpressed MKP-7 is polyubiquitinated when co-expressed with ubiquitin and that proteasome inhibitors markedly inhibit MKP-7 degradation. We also determined that MKP-7 phosphorylated at Ser-446 has a longer half-life than unphosphorylated form of the wild type protein, as does a phospho-mimic mutant of MKP-7. These results indicate that activation of the ERK pathway strongly blocks JNK activation through stabilization of MKP-7 mediated by phosphorylation.  相似文献   

11.
Id-1 delays senescence but does not immortalize keratinocytes   总被引:16,自引:0,他引:16  
Defining the molecular basis responsible for regulating the proliferative potential of keratinocytes has important implications for normal homeostasis and neoplasia of the skin. Under current culture conditions, neonatal foreskin-derived human keratinocytes possess a relatively short replicative lifespan. Recently it was reported that forced overexpression of the helix-loop-helix protein Id-1 was capable of immortalizing keratinocytes, secondary to activation of telomerase activity and suppression of p16/Rb-mediated growth arrest pathways. To investigate the relationship between Id-1, telomerase activity, telomere length, p16, Rb cell cycle regulators, and senescence, whole populations of keratinocytes were infected with a retrovirus to induce overexpression of Id-1. In these unselected cultures, enhanced Id-1 levels clearly extended the lifespan of keratinocytes, but Id-1 did not prevent the onset of replicative senescence. Under these experimental conditions, Id-1 expression did not trigger induction of telomerase activity, and there was progressive shortening of the telomeres that was accompanied by elevated p16 levels and prevalence of active Rb. The ability of Id-1 to postpone, but not prevent, senescence may be related to partial inhibition of p16 expression, as the Id-1-overexpressing cultures displayed a decreased capacity for 12-O-tetradecanoylphorbol-13-acetate-mediated p16 induction. Thus, while no immortalization was observed, Id-1 could delay the onset of replicative senescence in unselected human keratinocyte populations.  相似文献   

12.
MAPK phosphatase 3 (MKP3) is highly specific for ERK1/2 inactivation via dephosphorylation of both phosphotyrosine and phosphothreonine critical for enzymatic activation. Here, we show that MKP3 is able to effectively dephosphorylate the phosphotyrosine, but not phosphothreonine, in the activation loop of p38α in vitro and in intact cells. The catalytic constant of the MKP3 reaction for p38α is comparable with that for ERK2. Remarkably, MKP3, ERK2, and phosphorylated p38α can form a stable ternary complex in solution, and the phosphatase activity of MKP3 toward p38α substrate is allosterically regulated by ERK2-MKP3 interaction. This suggests that MKP3 not only controls the activities of ERK2 and p38α but also mediates cross-talk between these two MAPK pathways. The crystal structure of bisphosphorylated p38α has been determined at 2.1 Å resolution. Comparisons between the phosphorylated MAPK structures reveal the molecular basis of MKP3 substrate specificity.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.  相似文献   

14.
The mitogen-activated protein kinase phosphatase 3 (MKP3)-catalyzed hydrolysis of aryl phosphates in the absence and presence of extracellular signal-regulated kinase 2 (ERK2) was investigated in order to provide insights into the molecular basis of the ERK2-induced MKP3 activation. In the absence of ERK2, the MKP3-catalyzed hydrolysis of simple aryl phosphates does not display any dependence on pH, viscosity, and the nature of the leaving group. Increased catalytic activity and enhanced affinity for oxyanions are observed for MKP3 in the presence of ERK2. In addition, normal bell-shaped pH dependence on the reaction catalyzed by MKP3 is restored in the presence of ERK2. Collectively, these results suggest that the rate-limiting step in the absence of ERK2 for the MKP3 reaction corresponds to a substrate-induced conformational change in MKP3 involving active site rearrangement and general acid loop closure. The binding of ERK2 to the N-terminal domain of MKP3 facilitates the repositioning of active site residues and speeds up the loop closure in MKP3 such that chemistry becomes rate-limiting in the presence of ERK2. Remarkably, it is found that the extent of ERK2-induced MKP3 activation is substrate dependent, with smaller activation observed for bulkier substrates. Unlike simple aryl phosphates, the MKP3-catalyzed hydrolysis of bulky polycyclic substrates exhibits bell-shaped pH rate profiles in the absence of ERK2. Furthermore, it is found that glycerol can also activate the MKP3-catalyzed reaction, increase the affinity of MKP3 for oxyanion, and restore the bell-shaped pH rate profile for the MKP3-catalyzed reaction. Thus, the rate of repositioning of catalytic groups and the reorienting of the electrostatic environment in the MKP3 active site can be enhanced not only by ERK2 but also by high affinity substrates or by glycerol.  相似文献   

15.
In contrast to cancer cells and embryonic stem cells, the lifespan of primary human cells is finite. After a defined number of population doublings, cells enter in an irreversible growth-arrested state termed replicative senescence. Mutations of genes involved in immortalization can contribute to cancer. In a genetic screen for cDNAs bypassing replicative senescence of normal human prostate epithelial cells (HPrEC), we identified CBX7, a gene that encodes a Polycomb protein, as shown by sequence homology, its interaction with Ring1 and its localization to nuclear Polycomb bodies. CBX7 extends the lifespan of a wide range of normal human cells and immortalizes mouse fibroblasts by downregulating expression of the Ink4a/Arf locus. CBX7 does not inter-function or colocalize with Bmi1, and both can exert their actions independently of each other as shown by reverse genetics. CBX7 expression is downregulated during replicative senescence and its ablation by short-hairpin RNA (shRNA) treatment inhibited growth of normal cells though induction of the Ink4a/Arf locus. Taken together, these data show that CBX7 controls cellular lifespan through regulation of both the p16(Ink4a)/Rb and the Arf/p53 pathways.  相似文献   

16.
Oxidative stress links diverse neuropathological conditions that include stroke, Parkinson's disease, and Alzheimer's disease and has been modeled in vitro with various paradigms that lead to neuronal cell death following the increased accumulation of reactive oxygen species. For example, immortalized neurons and immature primary cortical neurons undergo cell death in response to depletion of the antioxidant glutathione, which can be elicited by administration of glutamate at high concentrations. We have demonstrated previously that this glutamate-induced oxidative toxicity requires activation of the mitogen-activated protein kinase member ERK1/2, but the mechanisms by which this activation takes place in oxidatively stressed neurons are still not fully known. In this study, we demonstrate that during oxidative stress, ERK-directed phosphatases of both the serine/threonine- and tyrosine-directed classes are selectively and reversibly inhibited via a mechanism that is dependent upon the oxidation of cysteine thiols. Furthermore, the impact of ERK-directed phosphatases on ERK1/2 activation and oxidative toxicity in neurons was tested in a neuronal cell line and in primary cortical cultures. Overexpression of the highly ERK-specific phosphatase MKP3 and its catalytic mutant, MKP3 C293S, were neuroprotective in transiently transfected HT22 cells and primary neurons. The neuroprotective effect of the MKP3 C293S mutant, which enhances ERK1/2 phosphorylation but blocks its nuclear translocation, demonstrates the necessity for active ERK1/2 nuclear localization for oxidative toxicity in neurons. Together, these data implicate the inhibition of endogenous ERK-directed phosphatases as a mechanism that leads to aberrant ERK1/2 activation and nuclear accumulation during oxidative toxicity in neurons.  相似文献   

17.
MAP kinase phosphatase 3 (MKP3, also known as DUSP6 and PYST1) is involved in extracellular signal receptor kinase (ERK) regulation and functions as a specific phosphatase to the activated (phosphorylated) forms of ERK1 and ERK2. MKP3 displays allosteric activation, which aids in tightly regulating its function to ERK substrates, but not other related MAPKs. Due to MKP3's specificity for the ERK signaling pathway, the development of specific activators or inhibitors to the enzyme have been suggested in order to expressly influence the ERK1 and ERK2 pathways. To produce the high yields of MKP3 protein necessary for physico-chemical characterization of MKP3 and for high throughput screening of its small-molecule activators and inhibitors, we have cloned, purified and, and identified refolding conditions suitable for producing full-length, human MKP3 from Escherichia coli inclusion bodies. Furthermore, we demonstrate the use of a 96-well plate format refolding assay in which the ERK-induced activity of MKP3 is simulated by 33% DMSO. The assay allowed for rapid detection of MKP3's function following a refolding screen in the absence of ERK and thus provides quick and inexpensive testing of MKP3 activity. Following screening, the refolded product was confirmed to be correctly folded by steady-state kinetic analysis and by the CD spectroscopy-determined secondary structure content. CD data were consistent with 36% helix and 14% sheet, which compared to an expected 32.9% helix and 12.4% sheet. These data indicated that MKP3 was properly folded, making it a suitable protein for use in functional studies.  相似文献   

18.
MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (MKPs). MKP-3, a prototypical MKP, achieves substrate specificity through its N-terminal domain binding to the MAPK ERK2, resulting in the activation of its C-terminal phosphatase domain. The solution structure and biochemical analysis of the ERK2 binding (EB) domain of MKP-3 show that regions that are essential for ERK2 binding partly overlap with its sites that interact with the C-terminal catalytic domain, and that these interactions are functionally coupled to the active site residues of MKP-3. Our findings suggest a novel mechanism by which the EB domain binding to ERK2 is transduced to cause a conformational change of the C-terminal catalytic domain, resulting in the enzymatic activation of MKP-3.  相似文献   

19.
20.
Rigas JD  Hoff RH  Rice AE  Hengge AC  Denu JM 《Biochemistry》2001,40(14):4398-4406
Dual-specificity phosphatase MKP3 down-regulates mitogenic signaling through dephosphorylation of extracellular regulated kinase (ERK). Unlike a simple substrate-enzyme interaction, the noncatalytic, amino-terminal domain of MKP3 can bind efficiently to ERK, leading to activation of the phosphatase catalytic domain by as much as 100-fold toward exogenous substrates. It has been suggested that ERK activates MKP3 through the stabilization of the active phosphatase conformation, enabling general acid catalysis. Here, we investigated whether Asp-262 of MKP3 is the bona fide general acid and evaluated its contribution to the catalytic steps activated by ERK. Using site-directed mutagenesis, pH rate and Br?nsted analyses, kinetic isotope effects, and steady-state and rapid reaction kinetics, Asp-262 was identified as the authentic general acid catalyst, donating a proton to the leaving group oxygen during P-O bond cleavage. Kinetic isotope effects [(18)(V/K)(bridge), (18)(V/K)(nonbridge), and (15)(V/K)] were evaluated for the effect of ERK and of the D262N mutation on the transition state of the phosphoryl transfer reaction. The patterns of the three isotope effects for the reaction with native MKP3 in the presence of ERK are indicative of a reaction where the leaving group is protonated in the transition state, whereas in the D262N mutant, the leaving group departs as the anion. Even without general acid catalysis, the D262N mutant reaction is activated by ERK through increased phosphate affinity ( approximately 8-fold) and the partial stabilization of the transition state for phospho-enzyme intermediate formation ( approximately 4-fold). Based on these analyses, we estimate that dephosphorylation of phosphorylated ERK by the D262N mutant is >1000-fold lower than by native, activated MKP3. Also, the kinetic results suggest that Asp-262 functions as a general base during thiol-phosphate intermediate hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号