首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wenxian Wu  Wen Li  Hao Chen  Runzhi Zhu  Du Feng 《Autophagy》2016,12(9):1675-1676
Mitochondria need to be fragmented prior to engulfment by phagophores, the precursors to autophagosomes. However, how these 2 processes are finely regulated and integrated is poorly understood. We have shown that the outer mitochondrial membrane protein FUNDC1 is a novel mitochondrial-associated membrane (MAM) protein, enriched at the MAM by interacting with the ER resident protein CANX (calnexin) under hypoxia. As mitophagy proceeds, it dissociates from CANX and preferably recruits DNM1L/DRP1 to drive mitochondrial fission in response to hypoxic stress. In addition, knocking down of FUNDC1, DNM1L or CANX in hypoxic cells increases the number of elongated mitochondria and also reduces the colocalization of autophagosome and mitochondria, thus preventing mitophagy. These findings identify FUNDC1 as a molecular hub integrating mitochondrial fission and mitophagy at the MAM in response to hypoxia.  相似文献   

2.
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact “coupling” of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the “coupling” across the double membrane for mitochondrial dynamics and quality control.  相似文献   

3.
Mitophagy plays pivotal roles in the selective disposal of unwanted mitochondria, and accumulation of damaged mitochondria has been linked to aging-related diseases. However, definitive proof that mitophagy regulates mitochondrial quality in vivo is lacking. It is also largely unclear whether damaged mitochondria are the cause or just the consequence of these diseases. We previously showed that FUNDC1 is a mitophagy receptor that interacts with LC3 to mediate mitophagy in response to hypoxia in cultured cells. We established Fundc1 knockout mouse models and used genetic and biochemical approaches, including a synthetic peptide that blocks the FUNDC1-LC3 interaction, to demonstrate that mitophagy regulates both mitochondrial quantity and quality in vivo in response to hypoxia or hypoxic conditions caused by ischemia-reperfusion (I/R) heart injury. We found that hypoxic mitophagy regulates platelet activities. Furthermore, we found that hypoxic preconditioning induces FUNDC1-dependent mitophagy in platelets and reduces I/R-induced heart injury, suggesting a new strategy to protect cardiac function and fight cardiovascular diseases.  相似文献   

4.
The ER tethers tightly to mitochondria and the mitochondrial protein FUNDC1 recruits Drp1 to ER-mitochondria contact sites, subsequently facilitating mitochondrial fission and preventing mitochondria from undergoing hypoxic stress. However, the mechanisms by which the ER modulates hypoxia-induced mitochondrial fission are poorly understood. Here, we show that USP19, an ER-resident deubiquitinase, accumulates at ER-mitochondria contact sites under hypoxia and promotes hypoxia-induced mitochondrial division. In response to hypoxia, USP19 binds to and deubiquitinates FUNDC1 at ER-mitochondria contact sites, which facilitates Drp1 oligomerization and Drp1 GTP-binding and hydrolysis activities, thereby promoting mitochondrial division. Our findings reveal a unique hypoxia response pathway mediated by an ER protein that regulates mitochondrial dynamics.  相似文献   

5.
Autophagy eliminates dysfunctional mitochondria in an intricate process known as mitophagy. ULK1 is critical for the induction of autophagy, but its substrate(s) and mechanism of action in mitophagy remain unclear. Here, we show that ULK1 is upregulated and translocates to fragmented mitochondria upon mitophagy induction by either hypoxia or mitochondrial uncouplers. At mitochondria, ULK1 interacts with FUNDC1, phosphorylating it at serine 17, which enhances FUNDC1 binding to LC3. A ULK1‐binding‐deficient mutant of FUNDC1 prevents ULK1 translocation to mitochondria and inhibits mitophagy. Finally, kinase‐active ULK1 and a phospho‐mimicking mutant of FUNDC1 rescue mitophagy in ULK1‐null cells. Thus, we conclude that FUNDC1 regulates ULK1 recruitment to damaged mitochondria, where FUNDC1 phosphorylation by ULK1 is crucial for mitophagy.  相似文献   

6.
Mitophagy is an essential process for mitochondrial quality control and turnover. It is activated by two distinct pathways, one dependent on ubiquitin and the other dependent on receptors including FUNDC1. It is not clear whether these pathways coordinate to mediate mitophagy in response to stresses, or how mitophagy receptors sense stress signals to activate mitophagy. We find that the mitochondrial E3 ligase MARCH5, but not Parkin, plays a role in regulating hypoxia‐induced mitophagy by ubiquitylating and degrading FUNDC1. MARCH5 directly interacts with FUNDC1 to mediate its ubiquitylation at lysine 119 for subsequent degradation. Degradation of FUNDC1 by MARCH5 expression desensitizes mitochondria to hypoxia‐induced mitophagy, whereas knockdown of endogenous MARCH5 significantly inhibits FUNDC1 degradation and enhances mitochondrial sensitivity toward mitophagy‐inducing stresses. Our findings reveal a feedback regulatory mechanism to control the protein levels of a mitochondrial receptor to fine‐tune mitochondrial quality.  相似文献   

7.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.  相似文献   

8.
9.
Mitochondrial fission is essential for the degradation of damaged mitochondria. It is currently unknown how the dynamin-related protein 1 (DRP1)–associated fission machinery is selectively targeted to segregate damaged mitochondria. We show that PTEN-induced putative kinase (PINK1) serves as a pro-fission signal, independently of Parkin. Normally, the scaffold protein AKAP1 recruits protein kinase A (PKA) to the outer mitochondrial membrane to phospho-inhibit DRP1. We reveal that after damage, PINK1 triggers PKA displacement from A-kinase anchoring protein 1. By ejecting PKA, PINK1 ensures the requisite fission of damaged mitochondria for organelle degradation. We propose that PINK1 functions as a master mitophagy regulator by activating Parkin and DRP1 in response to damage. We confirm that PINK1 mutations causing Parkinson disease interfere with the orchestration of selective fission and mitophagy by PINK1.  相似文献   

10.
The endoplasmic reticulum (ER) can elicit proapoptotic signalling that results in transmission of Ca(2+) to the mitochondria, which in turn stimulates recruitment of the fission enzyme DRP1 to the surface of the organelle. Here, we show that BH3-only BIK activates this pathway at the ER in intact cells, resulting in mitochondrial fragmentation but little release of cytochrome c to the cytosol. The BIK-induced transformations in mitochondria are dynamic in nature and involve DRP1-dependent remodelling and opening of cristae, where the major stores of cytochrome c reside. This novel function for DRP1 is distinct from its recognized role in regulating mitochondrial fission. Selective permeabilization of the outer membrane with digitonin confirmed that BIK stimulation results in mobilization of intramitochondrial cytochrome c. Of note, BIK can cooperate with a weak BH3-only protein that targets mitochondria, such as NOXA, to activate BAX by a mechanism that is independent of DRP1 enzyme activity. When expressed together, BIK and NOXA cause rapid release of mobilized cytochrome c and activation of caspases.  相似文献   

11.
Sepsis and shock states impose mitochondrial stress, and in response, adaptive mechanisms such as fission, fusion and mitophagy are induced to eliminate damaged portions of or entire dysfunctional mitochondria. The mechanisms underlying these events are being elucidated; yet a direct link between loss of mitochondrial membrane potential ΔΨm and the initiation of fission, fusion and mitophagy remains to be well characterized. The direct association between the magnitude of the ΔΨm and the capacity for mitochondria to buffer Ca2+ renders Ca2+ uniquely suited as the signal engaging these mechanisms in circumstances of mitochondrial stress that lower the ΔΨm. Herein, we show that the calcium/calmodulin-dependent protein kinase (CaMK) IV mediates an adaptive slowing in oxidative respiration that minimizes oxidative stress in the kidneys of mice subjected to either cecal ligation and puncture (CLP) sepsis or endotoxemia. CaMKIV shifts the balance towards mitochondrial fission and away from fusion by 1) directly phosphorylating an activating Serine616 on the fission protein DRP1 and 2) reducing the expression of the fusion proteins Mfn1/2 and OPA-1. CaMKIV, through its function as a direct PINK1 kinase and regulator of Parkin expression, also enables mitophagy. These data support that CaMKIV serves as a keystone linking mitochondrial stress with the adaptive mechanisms of mitochondrial fission, fusion and mitophagy that mitigate oxidative stress in the kidneys of mice responding to sepsis.  相似文献   

12.
线粒体质量控制对于线粒体网络的稳态和线粒体功能的正常发挥具有重要意义。三磷酸腺苷酶家族蛋白3A(ATAD3A)是同时参与调节线粒体结构功能、线粒体动力学和线粒体自噬等重要生物学过程的线粒体膜蛋白之一。近期研究表明,ATAD3A既可与Mic60/Mitofilin和线粒体转录因子A (TFAM)等因子相互作用以维持线粒体嵴的形态和氧化磷酸化功能,又能与发动蛋白相关蛋白1 (Drp1)结合而正性/负性调节线粒体分裂,还可作为线粒体外膜转位酶(TOM)复合物和线粒体内膜转位酶(TIM)复合物之间的桥接因子而介导PTEN诱导激酶(PINK1)输入线粒体进行加工,显示出促自噬或抗自噬活性。本文对ATAD3A在调控线粒体质量控制中的作用及其机制进行了综述。  相似文献   

13.
Acute heat stress (aHS) can induce strong developmental defects in Caenorhabditis elegans larva but not lethality or sterility. This stress results in transitory fragmentation of mitochondria, formation of aggregates in the matrix, and decrease of mitochondrial respiration. Moreover, active autophagic flux associated with mitophagy events enables the rebuilding of the mitochondrial network and developmental recovery, showing that the autophagic response is protective. This adaptation to aHS does not require Pink1/Parkin or the mitophagy receptors DCT-1/NIX and FUNDC1. We also find that mitochondria are a major site for autophagosome biogenesis in the epidermis in both standard and heat stress conditions. In addition, we report that the depletion of the dynamin-related protein 1 (DRP-1) affects autophagic processes and the adaptation to aHS. In drp-1 animals, the abnormal mitochondria tend to modify their shape upon aHS but are unable to achieve fragmentation. Autophagy is induced, but autophagosomes are abnormally elongated and clustered on mitochondria. Our data support a role for DRP-1 in coordinating mitochondrial fission and autophagosome biogenesis in stress conditions.  相似文献   

14.
Mitochondrial fission requires the evolutionarily conserved dynamin related protein (DRP1), which is recruited from the cytosol to the mitochondrial outer membrane to coordinate membrane scission. Currently, the mechanism of recruitment and assembly of DRP1 on the mitochondria is unclear. Here, we identify Ubc9 and Sumo1 as specific DRP1-interacting proteins and demonstrate that DRP1 is a Sumo1 substrate. In addition, a surprising number of Sumo1 conjugates were observed in the mitochondrial fractions, suggesting that sumoylation is a common mitochondrial modification. Video microscopy demonstrates that YFP:Sumo1 is often found at the site of mitochondrial fission and remains tightly associated to the tips of fragmented mitochondria. Consistent with this, fluorescence microscopy revealed that a portion of total cytosolic YFP:Sumo1 colocalizes with endogenous mitochondrial DRP1. Finally, transient transfection of Sumo1 dramatically increases the level of mitochondrial fragmentation. Analysis of endogenous DRP1 levels indicates that overexpression of Sumo1 specifically protects DRP1 from degradation, resulting in a more stable, active pool of DRP1, which at least partially accounts for the excess fragmentation. Together, these data are the first to identify a function for Sumo1 on the mitochondria and suggest a novel role for the participation of Sumo1 in mitochondrial fission.  相似文献   

15.
Chronic obstructive pulmonary disease (COPD) is a major global epidemic with increasing incidence worldwide. The pathogenesis of COPD is involved with mitochondrial autophagy. Recently, it has been reported that FUN14 domain containing 1 (FUNDC1) is a mediator of mitochondrial autophagy. Therefore, we hypothesized that FUNDC1 was involved in cigarette smoke (CS)-induced COPD progression by regulating mitochondrial autophagy. In vitro cigarette smoke extract (CSE)-treated human bronchial epithelial cell (hBEC) Beas-2B cell line and in vivo CS-induced COPD mouse models were developed, in which FUNDC1 expression was measured. Next, whether FUNDC1 interacted with dynamin-related protein 1 (DRP1) in COPD was investigated. The functional mechanism of FUNDC1 in COPD was evaluated through gain- or loss-of-function studies. Then, pulmonary function, mitochondrial transmembrane potential (MTP) and mucociliary clearance (MCC) were examined. Levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and expression of autophagy-specific markers (light chain 3 [LC3] II, LC3 I, and Tom20) were measured. Finally, apoptosis and mitochondrial autophagy were assessed. FUNDC1 was highly expressed in CSE-treated hBECs and COPD mice. Meanwhile, FUNDC1 was proved to interact with DRP1 in CSE-treated cells. Moreover, in CSE-treated hBECs, silencing FUNDC1 was observed to reduce levels of IL-6 and TNF-α, and MTP but increase MCC, and inhibit CSE-induced mitochondrial autophagy and Beas-2B cell apoptosis, which was consistent with the trend in COPD mouse models. In addition, pulmonary function of COPD mouse models was increased in response to FUNDC1 silencing. Finally, silencing of DRP1 also inhibited mitochondrial autophagy and Beas-2B cell apoptosis. Collectively, FUNDC1 silencing could suppress the progression of COPD by inhibiting mitochondrial autophagy and hBEC apoptosis through interaction with DRP1, highlighting a potential therapeutic target for COPD treatment.  相似文献   

16.
The subcellular distribution of calnexin is mediated by PACS-2   总被引:1,自引:0,他引:1       下载免费PDF全文
Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.  相似文献   

17.
Ziheng Chen  Sami Siraj  Lei Liu 《Autophagy》2017,13(7):1244-1245
Mitophagy is responsible for removal of damaged mitochondria and is therefore a fundamental process in mitochondrial quality control. Both ubiquitin-dependent and receptor-dependent pathways are considered to mediate mitophagy. These distinct mechanisms may be activated in response to distinct mitochondrial stresses. An intriguing question is whether and how crosstalk occurs between the distinct pathways to coordinate mitophagy. We have uncovered a striking piece of evidence to demonstrate that the mitophagy receptor FUNDC1 is a substrate of MARCH5, a mitochondrially localized E3 ubiquitin ligase. In response to hypoxia, MARCH5 degrades redundant FUNDC1 to fine-tune hypoxia-induced mitophagy, whereas ablation of MARCH5 leads to accumulation of FUNDC1 and an exaggerated mitophagic phenotype. Mechanistic studies demonstrate that hypoxic insult enhances the interaction of FUNDC1 with MARCH5, which ubiquitinates FUNDC1 at lysine 119 for subsequent degradation. MARCH5-based ubiquitination and degradation of FUNDC1 circumvents injudicious removal of cellular mitochondria. However, severe hypoxic stress leads to dephosphorylation of FUNDC1, increasing mitophagic flux.  相似文献   

18.
Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.  相似文献   

19.
Mitochondrial dynamics play a critical role in deciding the fate of a cell under normal and diseased condition. Recent surge of studies indicate their regulatory role in meeting energy demands in renal cells making them critical entities in the progression of diabetic nephropathy. Diabetes is remarkably associated with abnormal fuel metabolism, a basis for free radical generation, which if left unchecked may devastate the mitochondria structurally and functionally. Impaired mitochondrial function and their aberrant accumulation have been known to be involved in the manifestation of diabetic nephropathy, indicating perturbed balance of mitochondrial dynamics, and mitochondrial turnover. Mitochondrial dynamics emphasize the critical role of mitochondrial fission proteins such as mitochondrial fission 1, dynamin-related protein 1 and mitochondrial fission factor and fusion proteins including mitofusin-1, mitofusin-2 and optic atrophy 1. Clearance of dysfunctional mitochondria is aided by translocation of autophagy machinery to the impaired mitochondria and subsequent activation of mitophagy regulating proteins PTEN-induced putative kinase 1 and Parkin, for which mitochondrial fission is a prior event. In this review, we discuss recent progression in our understanding of the molecular mechanisms targeting reactive oxygen species mediated alterations in mitochondrial energetics, mitophagy related disorders, impaired glucose transport, tubular atrophy, and renal cell death. The molecular cross talks linking autophagy and renoprotection through an intervention of 5′-AMP-activated protein kinase, mammalian target of rapamycin, and SIRT1 factors are also highlighted here, as in-depth exploration of these pathways may help in deriving therapeutic strategies for managing diabetes provoked end-stage renal disease.  相似文献   

20.
Liu L  Feng D  Chen G  Chen M  Zheng Q  Song P  Ma Q  Zhu C  Wang R  Qi W  Huang L  Xue P  Li B  Wang X  Jin H  Wang J  Yang F  Liu P  Zhu Y  Sui S  Chen Q 《Nature cell biology》2012,14(2):177-185
Accumulating evidence has shown that dysfunctional mitochondria can be selectively removed by mitophagy. Dysregulation of mitophagy is implicated in the development of neurodegenerative disease and metabolic disorders. How individual mitochondria are recognized for removal and how this process is regulated remain poorly understood. Here we report that FUNDC1, an integral mitochondrial outer-membrane protein, is a receptor for hypoxia-induced mitophagy. FUNDC1 interacted with LC3 through its typical LC3-binding motif Y(18)xxL(21), and mutation of the LC3-interaction region impaired its interaction with LC3 and the subsequent induction of mitophagy. Knockdown of endogenous FUNDC1 significantly prevented hypoxia-induced mitophagy, which could be reversed by the expression of wild-type FUNDC1, but not LC3-interaction-deficient FUNDC1 mutants. Mechanistic studies further revealed that hypoxia induced dephosphorylation of FUNDC1 and enhanced its interaction with LC3 for selective mitophagy. Our findings thus offer insights into mitochondrial quality control in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号