首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Matrix biology》2009,28(8):443-444
  相似文献   

2.
3.
Cilia and flagella play important roles in human health by contributing to cellular motility as well as sensing and responding to environmental cues. Defects in ciliary assembly and/or function can lead to a range of human diseases, collectively known as the ciliopathies, including polycystic kidney, liver and pancreatic diseases, sterility, obesity, situs inversus, hydrocephalus and retinal degeneration. A basic understanding of how cilia form and function is essential for deciphering ciliopathies and generating therapeutic treatments. The cilium is a unique compartment that contains a distinct complement of protein and lipid. However, the molecular mechanisms by which soluble and membrane protein components are targeted to and trafficked into the cilium are not well understood. Cilia are generated and maintained by IFT (intraflagellar transport) in which IFT cargoes are transported along axonemal microtubules by kinesin and dynein motors. A variety of genetic, biochemical and cell biological approaches has established the heterotrimeric kinesin-2 motor as the 'core' IFT motor, whereas other members of the kinesin-2, kinesin-3 and kinesin-4 families function as 'accessory' motors for the transport of specific cargoes in diverse cell types. Motors of the kinesin-9 and kinesin-13 families play a non-IFT role in regulating ciliary beating or axonemal length, respectively. Entry of kinesin motors and their cargoes into the ciliary compartment requires components of the nuclear import machinery, specifically importin-β2 (transportin-1) and Ran-GTP (Ran bound to GTP), suggesting that similar mechanisms may regulate entry into the nuclear and ciliary compartments.  相似文献   

4.
5.
We report for the first time the presence of endothelial cilia in rat blood vessels. They are seen in the mesenteric arteries of hypertensive rats and the intramyocardial capillaries of aged rats. The cilia are solitary and have the shape of the "9 + 0" axonemal structure. The processes of the basal foot and the transitional fiber are accompanied by basal bodies. The function of the solitary cilia is obscure.  相似文献   

6.
Primary cilia in neurons have often been regarded as rare, vestigial curiosities. However, neuronal cilia are now gaining recognition as ubiquitous organelles in the mammalian brain, raising speculation about what their functions may be. They might have some features tailored for the nervous system and others that serve needs shared by a spectrum of other cell types. Here we review clues from the literature and present new data supporting several possibilities for the significance of neuronal cilia. Our immunocytochemical results show regional heterogeneity in neuronal cilia. Brain regions nearer to the cerebral ventricles had longer cilia, suggesting that they might sense chemicals such as peptides, originating from cerebrospinal fluid. In mutant Tg737(orpk)mice, most brain regions appeared to be missing cilia. The importance of intraflagellar transport proteins establishes a functional link between neuronal cilia and other primary cilia.  相似文献   

7.
Primary cilia are microtubule-based organelles that serve as hubs for the transduction of various developmental signaling pathways including Hedgehog, Wnt, FGF, and PDGF. Ciliary dysfunction contributes to a range of disorders, collectively known as the ciliopathies. Recently, interest has grown in these syndromes, particularly among craniofacial biologists, as many known and putative ciliopathies have severe craniofacial defects. Herein we discuss the current understanding of ciliary biology and craniofacial development in an attempt to gain insight into the molecular etiology for craniofacial ciliopathies, and uncover a characteristic ciliopathic craniofacial gestalt.  相似文献   

8.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

9.
10.
11.
12.
Basic fibroblast growth factor (bFGF) is a known mitogen for vascular smooth muscle cells and has been implicated as having a role in a number of proliferative vascular disorders. Binding of bFGF to heparin or heparan sulfate has been demonstrated to both stimulate and inhibit growth factor activity. The activity, towards bFGF, of heparan sulfate proteoglycans present within the vascular system is likely related to the chemical characteristics of the glycosaminoglycan as well as the structure and pericellular location of the intact proteoglycans. We have previously shown that endothelial conditioned medium inhibits both bFGF binding to vascular smooth muscle cells and bFGF stimulated cell proliferation in vitro. In the present study, we have isolated proteoglycans from endothelial cell conditioned medium and demonstrated that they are responsible for the bFGF inhibitory activity. We further separated endothelial secreted proteoglycans into two fractions, PG-A and PG-B. The larger sized fraction (PG-A) had greater inhibitory activity than did PG-B for both bFGF binding and bFGF stimulation of vascular smooth muscle cell proliferation. The increased relative activity of PG-A was attributed, in part, to larger heparan sulfate chains which were more potent inhibitors of bFGF binding than the smaller heparan sulfate chains on PG-B. Both proteoglycan fractions contained perlecan-like core proteins; however, PG-A contained an additional core protein (approximately 190 kDa) that was not observed in PG-B. Both proteoglycan fractions bound bFGF directly, and PG-A bound a significantly greater relative amount of bFGF than did PG-B. Thus the ability of endothelial heparan sulfate proteoglycans to bind bFGF and prevent its association with vascular smooth muscle cells appears essential for inhibition of bFGF-induced mitogenesis. The production of potent bFGF inhibitory heparan sulfate proteoglycans by endothelial cells might contribute to the maintenance of vascular homeostasis. J. Cell. Physiol. 172:209–220, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The primary cilium is an important sensory organelle, the regulation of which is not fully understood. We found that in polarized Madin-Darby Canine Kidney cells, the sphingolipid ceramide is specifically distributed to a cis-Golgi compartment at the base of the primary cilium. This compartment immunostained for the centrosome marker γ-tubulin, the Rho type GTPase cell division cycle 42 (Cdc42), and atypical protein kinase Cζ/λ (aPKC), a kinase activated by ceramide and associated with a polarity protein complex consisting of partitioning defective (Par)6 and Cdc42. Inhibition of ceramide biosynthesis with Fumonisin B1 prevented codistribution of aPKC and Cdc42 in the centrosomal/pericentriolar compartment and severely impaired ciliogenesis. Cilium formation and codistribution of aPKC and Cdc42 were restored by incubation with N-acetyl or N-palmitoyl sphingosine (C2 or C16 ceramide), or the ceramide analog N-oleoyl serinol (S18). Cilium formation was also restored by the glycogen synthase kinase-3β (GSK-3β) inhibitor indirubin-3-monoxime, suggesting that regulation of ciliogenesis depends on the inhibition of GSK-3β by ceramide-activated aPKC. Consistently, inhibition of aPKC with a pseudosubstrate inhibitor prevented restoration of ciliogenesis by C2 ceramide or S18. Our data show for the first time that ceramide is required for primary cilium formation.—Wang, G., K. Krishnamurthy, and E. Bieberich. Regulation of primary cilia formation by ceramide.  相似文献   

14.
Mutations of the ankyrin-repeat protein Inversin, a member of a diverse family of more than 12 proteins, cause nephronophthisis (NPH), an autosomal recessive cystic kidney disease associated with extra-renal manifestations such as retinitis pigmentosa, cerebellar aplasia and situs inversus. Most NPH gene products (NPHPs) localize to the cilium, and appear to control the transport of cargo protein to the cilium by forming functional networks. Inversin interacts with NPHP1 and NPHP3, and shares with NPHP4 the ability to antagonize Dishevelled-stimulated canonical Wnt signaling, potentially through recruitment of the Anaphase Promoting Complex (APC/C). However, Dishevelled antagonism may be confined towards the basal body, thereby polarizing motile cilia on the cells of the ventral node and respiratory tract. Inversin is essential for recruiting Dishevelled to the plasma membrane in response to activated Frizzled, a crucial step in planar cell polarity signaling. During vertebrate pronephros development, the Inversin-mediated translocation of Dishevelled appears to orchestrate the migration of cells and differentiation of segments that correspond to the mammalian loop of Henle. Thus, defective tubule migration and elongation may contribute to concentration defects and cause cyst formation in patients with NPH.  相似文献   

15.
NDP kinase moves into developing primary cilia   总被引:1,自引:0,他引:1  
Inmunofluorescence staining of murine NIH3T3 fibroblasts grown at high density shows that conventional nucleoside diphosphate (NDP) kinases A and B localize to a sensory organelle, the primary cilium. Similar results are obtained with Xenopus A6 kidney epithelial cells, suggesting that NDP kinases are a universal component of the primary cilium. The translocation of NDP kinase into primary cilia depends on size, taking place only when cilia reach a critical length of 5-6 microm. In mature cilia, NDP kinases are distributed along the ciliary shaft in a punctate pattern that is distinct from the continuous staining observed with acetylated alpha-tubulin, a ciliary marker and axonemal component. Isolation of a fraction enriched in primary cilia from A6 cells led to the finding that ciliary NDP kinase is enzymatically active, and is associated with the membrane and the matrix, but not the axoneme. In contrast, acetylated alpha-tubulin is found in the axoneme and, to a lesser extent, in the membrane. Based on the tightly regulated translocation process and the subciliary distribution pattern of NDP kinase, we propose that it plays a role in the elongation and maintenance of primary cilia by its ability to regenerate the GTP utilized by ciliary microtubule turnover and transmembrane signaling.  相似文献   

16.
Primary cilia are distinct organelles expressed by many vertebrate cells, including cholangiocytes; however, their functions remain obscure. To begin to explore the physiological role of these organelles in the liver, we described the morphology and structure of cholangiocyte cilia and developed new approaches for their isolation. Primary cilia were present only in bile ducts and were not observed in hepatocytes or in hepatic arterial or portal venous endothelial cells. Each cholangiocyte possesses a single cilium that extends from the apical membrane into the bile duct lumen. In addition, the length of the cilia was proportional to the bile duct diameter. We reproducibly isolated enriched fractions of cilia from normal rat and mouse cholangiocytes by two different approaches as assessed by scanning electron, transmission electron, and confocal microscopy. The purity of isolated ciliary fractions was further analyzed by Western blot analysis using acetylated tubulin as a ciliary marker and P2Y(2) as a nonciliary cell membrane marker. These novel techniques produced enriched ciliary fractions of sufficient purity and quantity for light and electron microscopy and for biochemical analyses. They will permit further assessment of the role of primary cilia in normal and pathological conditions.  相似文献   

17.
Primary cilia (PC) are important signaling hubs, and we here explored their role in colonic pathology. In the colon, PC are mostly present on fibroblasts, and exposure of mice to either chemically induced colitis‐associated colon carcinogenesis (CAC) or dextran sodium sulfate (DSS)‐induced acute colitis decreases PC numbers. We generated conditional knockout mice with reduced numbers of PC on colonic fibroblasts. These mice show increased susceptibility to CAC, as well as DSS‐induced colitis. Secretome and immunohistochemical analyses of DSS‐treated mice display an elevated production of the proinflammatory cytokine IL‐6 in PC‐deficient colons. An inflammatory environment diminishes PC presence in primary fibroblast cultures, which is triggered by IL‐6 as identified by RNA‐seq analysis together with blocking experiments. These findings suggest an activation loop between IL‐6 production and PC loss. An analysis of PC presence on biopsies of patients with ulcerative colitis or colorectal cancer (CRC) reveals decreased numbers of PC on colonic fibroblasts in pathological compared with surrounding normal tissue. Taken together, we provide evidence that a decrease in colonic PC numbers promotes colitis and CRC.  相似文献   

18.
This study examined primary cilia on cultured human and rabbit peritoneal mesothelial cells (PMC) and investigated factors that influence ciliary expression. Primary cilia were examined with indirect immunocytochemistry, laser scanning confocal microscopy and scanning electron microscopy. Ciliary expression was evaluated in cultures with or without l-cysteine (0.25 mM) or exposure to Ca(2+)-free Krebs-Ringer solution supplemented with EGTA, 0.5 mM. This treatment disrupted cell monolayer integrity. Cilia were counted and normalized to total cell counts using NIH image. Primary cilia were identified on both human and rabbit PMC. Cells treated with l-cysteine expressed significantly more cilia compared with monolayers deprived of l-cysteine. Exposure to Ca(2+)-free Krebs-Ringer solution significantly reduced cilia (5.9+/-1.0%, n=7). Although ciliary expression could be augmented with l-cysteine, approximately 60% of human PMC and 84% of rabbit PMC did not exhibit cilia. Together, these data show that monolayers of PMC express apical cilia that can be augmented with l-cysteine, independently of increased cell density.  相似文献   

19.
Adenylate cyclase regulates elongation of mammalian primary cilia   总被引:2,自引:0,他引:2  
The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1–2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII–cAMP signaling pathway.  相似文献   

20.
Variants in genes which encode for polycystin-1 and polycystin-2 cause most forms of autosomal dominant polycystic disease (ADPKD). Despite our strong understanding of the genetic determinants of ADPKD, we do not understand the structural features which govern the function of polycystins at the molecular level, nor do we understand the impact of most disease-causing variants on the conformational state of these proteins. These questions have remained elusive because polycystins localize to several organelle membranes, including the primary cilia. Primary cilia are microtubule based organelles which function as cellular antennae. Polycystin-2 and related polycystin-2 L1 are members of the transient receptor potential (TRP) ion channel family, and form distinct ion channels in the primary cilia of disparate cell types which can be directly measured. Polycystin-1 has both ion channel and adhesion G-protein coupled receptor (GPCR) features—but its role in forming a channel complex or as a channel subunit chaperone is undetermined. Nonetheless, recent polycystin structural determination by cryo-EM has provided a molecular template to understand their biophysical regulation and the impact of disease-causing variants. We will review these advances and discuss hypotheses regarding the regulation of polycystin channel opening by their structural domains within the context of the primary cilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号