首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
High‐throughput ‐omics techniques have revolutionised biology, allowing for thorough and unbiased characterisation of the molecular states of biological systems. However, cellular decision‐making is inherently a unicellular process to which “bulk” ‐omics techniques are poorly suited, as they capture ensemble averages of cell states. Recently developed single‐cell methods bridge this gap, allowing high‐throughput molecular surveys of individual cells. In this review, we cover core concepts of analysis of single‐cell gene expression data and highlight areas of developmental biology where single‐cell techniques have made important contributions. These include understanding of cell‐to‐cell heterogeneity, the tracing of differentiation pathways, quantification of gene expression from specific alleles, and the future directions of cell lineage tracing and spatial gene expression analysis.  相似文献   

5.
6.
7.
8.
9.
Sea urchin embryos are excellent for in vivo functional studies because of their transparency and tractability in manipulation. They are also favorites for pharmacological approaches since they develop in an aquatic environment and addition of test substances is straightforward. A concern in many pharmacological tests though is the potential for pleiotropic effects that confound the conclusions drawn from the results. Precise cellular interpretations are often not feasible because the impact of the perturbant is not known. Here we use single‐cell mRNA (messenger RNA) sequencing as a metric of cell types in the embryo and to determine the selectivity of two commonly used inhibitors, one each for the Wnt and the Delta‐Notch pathways, on these nascent cell types. We identified 11 distinct cell types based on mRNA profiling, and that the cell lineages affected by Wnt and Delta/Notch inhibition were distinct from each other. These data support specificity and distinct effects of these signaling pathways in the embryo and illuminate how these conserved pathways selectively regulate cell lineages at a single cell level. Overall, we conclude that single cell RNA‐seq analysis in this embryo is revealing of the cell types present during development, of the changes in the gene regulatory network resulting from inhibition of various signaling pathways, and of the selectivity of these pathways in influencing developmental trajectories.  相似文献   

10.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

11.
12.
13.
14.
For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot‐sizes capable of meeting commercial demands of up to 109 cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost‐effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier‐based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost‐effective and where microcarrier‐based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier‐based systems. These data are presented using a technology S‐curve as well as windows of operation to identify the combination of cell productivities and scale of single‐use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision‐making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. Biotechnol. Bioeng. 2014;111: 69–83. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

15.
16.
The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS‐1) and human umbilical vein endothelial cells (HUVEC) co‐cultured in fibrin over INS‐1 cell insulin secretion. For this purpose, a three‐dimensional (3D) cell culture chamber was designed, built using micro‐fabrication techniques and validated. The co‐culture was successfully carried out and the effect on INS‐1 cell insulin secretion was investigated. After 48 and 72 h, INS‐1 cells co‐cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS‐1 cells cultured alone or co‐cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Biotechnol. Bioeng. 2013; 110: 619–627. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
20.
The antigen specificity of cytotoxic T cells, provided by T‐cell receptors (TCRs), plays a central role in human autoimmune diseases, infection, and cancer. As the TCR repertoire is unique in individual cytotoxic T cells, a strategy to analyze its gene rearrangement at the single‐cell level is required. In this study, we applied a high‐density microcavity array enabling target cell screening of several thousands of single cells for identification of functional TCR‐β gene repertoires specific to melanoma (gp100) and cytomegalovirus (CMV) antigens. T cells expressing TCRs with the ability to recognize fluorescent‐labeled antigen peptide tetramers were isolated by using a micromanipulator under microscopy. Regularly arranged cells on the microcavity array eased detection and isolation of target single cells from a polyclonal T‐cell population. The isolated single cells were then directly utilized for RT‐PCR. By sequencing the amplified PCR products, antigen‐specific TCR‐β repertoires for gp100 and human cytomegalovirus antigens were successfully identified at the single‐cell level. This simple, accurate, and cost‐effective technique for single‐cell analysis has further potential as a valuable and widely applicable tool for studies on gene screening and expression analyses of various kinds of cells. Biotechnol. Bioeng. 2010;106: 311–318. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号