首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In recent years, the Zika virus has emerged from a neglected flavivirus to a health-threatening pathogen that causes epidemic outbreaks associated with neurological disorders and congenital malformations. In addition to vaccine development, the discovery of specific antiviral agents has been pursued intensely. The Zika virus protease NS2B-NS3 catalyses the processing of the viral precursor polyprotein as an essential step during viral replication. Since the epidemic Zika virus outbreak in the Americas, several inhibitors of this protease have been reported. Substrate-derived peptides revealed important structural information about the active site, whilst more drug-like small molecules have been discovered as allosteric inhibitors.  相似文献   

3.
Proteins that associate with lamins: many faces, many functions   总被引:1,自引:0,他引:1  
  相似文献   

4.
The many faces of epidermal growth factor repeats   总被引:23,自引:0,他引:23  
Epidermal growth factor (EGF) is a short peptide with a distinctive motif of six cysteines. This motif is found in many different proteins of diverse functions. One approach to determining the functional utility of EGF repeats is to undertake a methodical analysis of each individual protein. While this approach has met with some success, it has been applied to only a small fraction of all the EGF repeat-bearing proteins. A second approach is to consider all these proteins as a whole but give particular attention to structural and functional similarities. This review attempts a broad, although not comprehensive, survey of the families of proteins containing EGF repeats, with particular emphasis on the relative distribution of calcium-binding and noncalcium-binding EGF repeats.  相似文献   

5.
《Biophysical journal》2022,121(24):4900-4908
Zika virus (ZIKV) is a positive-sense single-stranded RNA virus that infects humans and can cause birth defects and neurological disorders. Its non-structural protein 3 (NS3) contains a protease domain and a helicase domain, both of which play essential roles during the viral life cycle. However, it has been shown that ZIKV NS3 has an inherently weak helicase activity, making it unable to unwind long RNA duplexes alone. How this activity is stimulated to process the viral genome and whether the two domains of NS3 are functionally coupled remain unclear. Here, we used optical tweezers to characterize the RNA-unwinding properties of ZIKV NS3—including its processivity, velocity, and step size—at the single-molecule level. We found that external forces that weaken the stability of the duplex RNA substrate significantly enhance the helicase activity of ZIKV NS3. On the other hand, we showed that the protease domain increases the binding affinity of NS3 to RNA but has only a minor effect on unwinding per se. Our findings suggest that the ZIKV NS3 helicase is activated on demand in the context of viral replication, a paradigm that may be generalizable to other flaviviruses.  相似文献   

6.
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.  相似文献   

7.
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.  相似文献   

8.
The many faces of tumor necrosis factor in stroke   总被引:27,自引:0,他引:27  
Hallenbeck JM 《Nature medicine》2002,8(12):1363-1368
  相似文献   

9.
Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue (m7GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV.  相似文献   

10.
Abstract

The major threats linked to Zika virus (ZIKV) are microcephaly, Guillain-Barre syndrome, and the ability to transfer through sexual transmission. Despite these threats, Zika specific FDA approved drugs or vaccines are not available as of yet. Additionally, the involvement of pregnant women makes the drug screening process lengthy and complicated in terms of safety and minimum toxicity of the molecules. Since NS3 helicase of ZIKV performs the critical function of unwinding double-stranded RNA during replication, it is considered as a promising drug target to block ZIKV replication. In the present study, we have exploited the NTPase site of ZIKV NS3 helicase for screening potential inhibitor compounds by molecular docking, and molecular dynamics (MD) simulation approaches. NS3 helicase hydrolyzes the ATP to use its energy for unwinding RNA. We have chosen twenty natural compounds from ZINC library with known antiviral properties and a helicase focused library (HFL) of small molecules from Life Chemicals compounds. After going through docking, the top hit molecules from ZINC and HFL library were further analysed by MD simulations to find out stable binding poses. Finally, we have reported the molecules with potential of binding at NTPase pocket of ZIKV NS3 helicase, which could be further tested on virus through in vitro experiments to check their efficacy.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

12.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

13.
Himeda T  Ohara Y 《Journal of virology》2012,86(3):1292-1296
Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important.  相似文献   

14.
15.
16.
Viral infection triggers host innate immune responses, which primarily include the activation of type I interferon (IFN) signaling and inflammasomes. Here, we report that Zika virus (ZIKV) infection triggers NLRP3 inflammasome activation, which is further enhanced by viral non‐structural protein NS1 to benefit its replication. NS1 recruits the host deubiquitinase USP8 to cleave K11‐linked poly‐ubiquitin chains from caspase‐1 at Lys134, thus inhibiting the proteasomal degradation of caspase‐1. The enhanced stabilization of caspase‐1 by NS1 promotes the cleavage of cGAS, which recognizes mitochondrial DNA release and initiates type I IFN signaling during ZIKV infection. NLRP3 deficiency increases type I IFN production and strengthens host resistance to ZIKVin vitro and in vivo. Taken together, our work unravels a novel antagonistic mechanism employed by ZIKV to suppress host immune response by manipulating the interplay between inflammasome and type I IFN signaling, which might guide the rational design of therapeutics in the future.  相似文献   

17.
Recent crystallography studies have shown that the binding site oxyanion hole plays an important role in inhibitor binding, but can exist in two conformations (active/inactive). We have undertaken molecular dynamics (MD) calculations to better understand oxyanion hole dynamics and thermodynamics. We find that the Zika virus (ZIKV) NS2B/NS3 protease maintains a stable closed conformation over multiple 100-ns conventional MD simulations in both the presence and absence of inhibitors. The S1, S2, and S3 pockets are stable as well. However, in two of eight simulations, the A132-G133 peptide bond in the binding pocket of S1' spontaneously flips to form a 310-helix that corresponds to the inactive conformation of the oxyanion hole, and then maintains this conformation until the end of the 100-ns conventional MD simulations without inversion of the flip. This conformational change affects the S1' pocket in ZIKV NS2B/NS3 protease active site, which is important for small molecule binding. The simulation results provide evidence at the atomic level that the inactive conformation of the oxyanion hole is more favored energetically when no specific interactions are formed between substrate/inhibitor and oxyanion hole residues. Interestingly, however, transition between the active and inactive conformation of the oxyanion hole can be observed by boosting the valley potential in accelerated MD simulations. This supports a proposed induced-fit mechanism of ZIKV NS2B/NS3 protease from computational methods and provides useful direction to enhance inhibitor binding predictions in structure-based drug design.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号