首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since astrocytes may sense and respond to neuronal activity these cells are now considered important players in brain signaling. Astrocytes form large gap junction coupled syncytia allowing them to clear the extracellular space from K+ and neurotransmitters accumulating during neuronal activity, and redistribute it to sites of lower extracellular concentrations. Increasing evidence suggests a crucial role for dysfunctional astrocytes in the etiology of epilepsy. Notably, alterations in expression, localization and function of astroglial K+ channels as well as impaired K+ buffering was observed in specimens from patients with pharmacoresistant temporal lobe epilepsy and in chronic epilepsy models. Altered astroglial gap junction coupling has also been reported in epileptic tissue which, however, seems to play a dual role: (i) junctional coupling counteracts hyperactivity by facilitating clearance of elevated extracellular K+ and glutamate while (ii) it also provides a pathway for energetic substrates and fuels neuronal activity. Dysfunctional astrocytes should be considered promising targets for new therapeutic strategies.  相似文献   

2.
The secretion of Sonic hedgehog (Shh) from the notochord and floor plate appears to generate a ventral-to-dorsal gradient of Shh activity that directs progenitor cell identity and neuronal fate in the ventral neural tube. In principle, the establishment of this Shh activity gradient could be achieved through the graded distribution of the Shh protein itself, or could depend on additional cell surface or secreted proteins that modify the response of neural cells to Shh. Cells of the neural plate differentiate from a region of the ectoderm that has recently expressed high levels of BMPs, raising the possibility that prospective ventral neural cells are exposed to residual levels of BMP activity. We have examined whether modulation of the level of BMP signaling regulates neural cell responses to Shh, and thus might contribute to the patterning of cell types in the ventral neural tube. Using an in vitro assay of neural cell differentiation we show that BMP signaling markedly alters neural cell responses to Shh signals, eliciting a ventral-to-dorsal switch in progenitor cell identity and neuronal fate. BMP signaling is regulated by secreted inhibitory factors, including noggin and follistatin, both of which are expressed in or adjacent to the neural plate. Conversely, follistatin but not noggin produces a dorsal-to-ventral switch in progenitor cell identity and neuronal fate in response to Shh both in vitro and in vivo. These results suggest that the specification of ventral neural cell types depends on the integration of Shh and BMP signaling activities. The net level of BMP signaling within neural tissue may be regulated by follistatin and perhaps other BMP inhibitors secreted by mesodermal cell types that flank the ventral neural tube.  相似文献   

3.
Neuroactive Amino Acids in Focally Epileptic Human Brain: A Review   总被引:3,自引:0,他引:3  
Studies of neuroactive amino acids and their regulatory enzymes in surgically excised focally epileptic human brain are reviewed. Concentrations of glutamate, aspartate and glycine are significantly increased in epileptogenic cerebral cortex. The activities of the enzymes, glutamate dehydrogenase and aspartate aminotransferase, involved in glutamate and aspartate metabolism are also increased. Polyamine synthesis is enhanced in epileptogenic cortex and may contribute to the activation of N-methyl-D-aspartate (NMDA) receptors. Nuclear magnetic resonance spectroscopy (NMRS) reveals that patients with poorly controlled complex partial seizures have a significant diminution in occipital lobe gamma aminobutyric acid (GABA) concentration. The activity of the enzyme GABA-aminotransaminase (GABA-T) which catalyzes GABA degredation is not altered in epileptogenic cortex. NMRS studies show that vigabatrin, a GABA-T inhibitor and effective antiepileptic, significantly increases brain GABA. Glutamate decarboxylase (GAD), responsible for GABA synthesis, is diminished in interneurons in discrete regions of epileptogenic cortex and hippocampus. In vivo microdialysis performed in epilepsy surgery patients provides measurements of extracellular amino acid levels during spontaneous seizures. Glutamate concentrations are higher in epileptic hippocampi and increase before seizure onset reaching potentially excitotoxic levels. Frontal or temporal cortical epileptogenic foci also release aspartate, glutamate and serine particularly during intense seizures or status epilepticus. GABA in contrast, exhibits a delayed and feeble rise in the epileptic hippocampus possibly due to a reduction in the number and/or efficiency of GABA transporters.  相似文献   

4.
We have previously shown that the intrahippocampal microinjection of okadaic acid (OKA), a potent inhibitor of serine/threonine protein phosphatases, induces epileptic seizures, neuronal death, and the hyperphosphorylation of the NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor. We administered OKA by reverse microdialysis in the hippocampus of awake and halothane-anesthetized rats, with simultaneous collection of microdialysis fractions and recording of the EEG activity, and subsequent histological analysis. OKA produced intense behavioral and persistent EEG seizure activity in the awake rats but not in the anesthetized animals, and did not significantly alter the extracellular concentration of glutamate and aspartate detected in the microdialysis fractions. One day after the experiment a remarkable neurodegeneration of CA1 hippocampal region was observed in both the awake and the anesthetized rats. We conclude that the OKA-induced epilepsy cannot be ascribed to increased extracellular glutamate, but to an increased sensitivity of NMDA receptor. We propose that halothane protected against the epilepsy because it blocks NMDA receptor overactivation, and that the neurodegeneration of CA1 region is independent of this overactivation and due probably to alterations of cytoskeletal proteins consequent to the OKA-induced hyperphosphorylation.  相似文献   

5.
Altered calcium homeostatic mechanisms have been implicated in the development of acquired epilepsy in numerous models. Stroke is one of the leading brain injuries that cause acquired epilepsy, yet little is known concerning the molecular mechanisms underlying stroke-induced epileptogenesis. Recently an in vitro model of stroke-induced epilepsy was developed and characterized as a powerful tool to study the pathophysiology of injury and stroke-induced epileptogenesis. Using this glutamate injury-induced epileptogenesis model, we have investigated the role of altered calcium homeostatic mechanisms in the development and maintenance of stroke-induced epilepsy. Epileptic neurons manifested elevated intracellular calcium levels compared to control neurons independent of neuronal activity and seizure discharge for the remainder of the life of the neurons in culture. In addition, epileptic neurons were found to have alterations in the ability to reduce intracellular calcium levels following a calcium load. These long-term epileptic changes in calcium homeostasis were dependent on calcium during the initial glutamate injury. The data demonstrate that significant alterations in calcium homeostatic mechanisms occur in association with stroke-induced epilepsy and suggest that these changes may play a role in both the induction and maintenance of the epileptic phenotype in this model.  相似文献   

6.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

7.
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability.  相似文献   

8.
Versican is one of the major extracellular matrix (ECM) proteins in the brain. ECM molecules and their cleavage products critically regulate the growth and arborization of neurites, hence adjusting the formation of neural networks. Recent findings have revealed that peptide fragments containing the versican C terminus (G3 domain) are present in human brain astrocytoma. The present study demonstrated that a versican G3 domain enhanced cell attachment, neurite growth, and glutamate receptor-mediated currents in cultured embryonic hippocampal neurons. In addition, the G3 domain intensified dendritic spines, increased the clustering of both synaptophysin and the glutamate receptor subunit GluR2, and augmented excitatory synaptic activity. In contrast, a mutated G3 domain lacking the epidermal growth factor (EGF)-like repeats (G3deltaEGF) had little effect on neurite growth and glutamatergic function. Treating the neurons with the G3-conditioned medium rapidly increased the levels of phosphorylated EGF receptor (pEGFR) and phosphorylated extracellular signal-regulated kinase (pERK), indicating an activation of EGFR-mediated signaling pathways. Blockade of EGFR prevented the G3-induced ERK activation and suppressed the G3-provoked enhancement of neurite growth and glutamatergic function but failed to block the G3-mediated enhancement of cell attachment. These combined results indicate that the versican G3 domain regulates neuronal attachment, neurite outgrowth, and synaptic function of hippocampal neurons via EGFR-dependent and -independent signaling pathway(s). Our findings suggest a role for ECM proteolytic products in neural development and regeneration.  相似文献   

9.
Matrix metalloproteases (MMPs) degrade or modify extracellular matrix or membrane-bound proteins in the brain. MMP-2 and MMP-9 are activated by treatments that result in a sustained neuronal depolarization and are thought to contribute to neuronal death and structural remodeling. At the synapse, MMP actions on extracellular proteins contribute to changes in synaptic efficacy during learning paradigms. They are also activated during epileptic seizures, and MMP-9 has been associated with the establishment of aberrant synaptic connections after neuronal death induced by kainate treatment. It remains unclear whether MMPs are activated by epileptic activities that do not induce cell death. Here we examine this point in two animal models of epilepsy that do not involve extensive cell damage. We detected an elevation of MMP-9 enzymatic activity in cortical regions of secondary generalization after focal seizures induced by 4-aminopyridine (4-AP) application in rats. Pro-MMP-9 levels were also higher in Wistar Glaxo Rijswijk (WAG/Rij) rats, a genetic model of generalized absence epilepsy, than they were in Sprague–Dawley rats, and this elevation was correlated with diurnally occurring spike-wave-discharges in WAG/Rij rats. The increased enzymatic activity of MMP-9 in these two different epilepsy models is associated with synchronized neuronal activity that does not induce widespread cell death. In these epilepsy models MMP-9 induction may therefore be associated with functions such as homeostatic synaptic plasticity rather than neuronal death.  相似文献   

10.
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.  相似文献   

11.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

12.
Very prominent in the large biochemical data bank on epilepsy, is the almost universal finding that a familial or environmental predisposition towards epilepsy, as well as the earliest signs preceding other forms of hypersynchronous excitation, coincide with an altered glutamate metabolism. Hence, it has become increasingly apparent that glutamate occupies a central position in the development of epilepsy or in the onset of a migraine incident. The importance of glutamate is explained by a variety of functions in the CNS: as a dominant constituent of many proteins, by its intermediary role in linking energy metabolism to that of many other amino acids, and as the virtually exclusive precursor of GABA. Moreover, glutamate serves as the primary substrate in ammonia detoxification and the product, glutamine, actively participates in CSF water homeostasis. Finally, by its direct electrophysiological and metabolic actions on neurons and glia, via at least four distinct types of receptor proteins, glutamate is implicated in a number of critical mechanisms of information. These include neuronal excitatory modulation, intracellular Ca2+ redistribution, and key metabolic (phosphorylation) mechanisms. The phenomena, when exaggerated due to excessive extracellular glutamate levels, may cause pathological effects such as hypersynchrony-epilepsy, Spreading Depression-migraine, high internal Ca2+-damage, impaired phosphorylation/dephosphorylation-necrosis, among others. Not surprising therefore that severe epilepsy may eventually cause CNS cytoarchitectual and metabolic damage, or conversely, that neural tissue trauma not infrequently gives rise to epilepsy many years later. Both conditions are associated with a persistent, excessive leakage or release of glutamate into the extracellular milieu. An electrophysiological and neurochemical commonality between migraine and epilepsy has also been noted. A specific nutritional supplement is proposed, consisting of a combination of taurine (100 mg),l-leucine (75 mg), (acetyl-)l-carnitine (25 mg), and zinc gluconate (10 mg) which is aimed at, principally, normalizing internal Ca2+ ionization, and removal of extracellular glutamate by glial amidation to glutamine.Special issue dedicated to Dr. Claude Baxter.  相似文献   

13.
Recent Ca2+ imaging studies in cell culture and in situ have shown that Ca2+ elevations in astrocytes stimulate glutamate release and increase neuronal Ca2+ levels, and that this astrocyte‐neuron signaling can be stimulated by prostaglandin E2 (PGE2). We investigated the electrophysiological consequences of the PGE2‐mediated astrocyte‐neuron signaling using whole‐cell recordings on cultured rat hippocampal cells. Focal application of PGE2 to astrocytes evoked a Ca2+ elevation in the stimulated cell by mobilizing internal Ca2+ stores, which further propagated as a Ca2+ wave to neighboring astrocytes. Whole‐cell recordings from neurons revealed that PGE2 evoked a slow inward current in neurons adjacent to astrocytes. This neuronal response required the presence of an astrocyte Ca2+ wave and was mediated through both N‐methyl‐D ‐aspartate (NMDA) and non‐NMDA glutamate receptors. Taken together with previous studies, these data demonstrate that PGE2‐evoked Ca2+ elevations in astrocyte cause the release of glutamate which activates neuronal ionotropic receptors. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 221–229, 1999  相似文献   

14.
15.
The astrocyte cystine/glutamate antiporter (system xc) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc mediates aglycemic neuronal cell death.  相似文献   

16.
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.  相似文献   

17.
We have investigated two characteristics of the glutamate system in the developing rabbit retina. 1) Glutamate immunoreactivity was observed at birth within developing processes of four cell types; two of which, photoreceptors and ganglion cells, are known to be glutamatergic in the adult. Two other cell types, type A horizontal cells and amacrine cells, are immunoreactive to both glutamate and GABA at birth, suggesting that endogenous pools of glutamate in GABAergic neurons serve as precursor for GABA synthesis. Thus it appears that endogenous glutamate pools are present within neurons prior to synaptogenesis as part of the early expression of either the glutamate or GABA transmitter phenotype. 2) Analysis of3H-glutamate metabolism during retinal development showed that rapid conversion of glutamate to glutamine does not occur until the second postnatal week, coincident with the expression of Muller (glial) cell activity. In the absence of glial metabolism in the neonate, extracellular concentrations of glutamate remain relatively high and are likely to have major effects on neuronal maturation.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

18.
We investigated whether alterations in glutamate metabolising glutamine synthetase activity occur in human epileptic neocortex, as shown previously for human epileptic hippocampus [Eid, T., Thomas, M.J., Spencer, D.D., Rundén-Pran, E., Lai, J.C.K., Malthankar, G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., de Lanerolle, N.C., 2004. Loss of glutamine synthetase in the human epileptic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28-37]. Glutamine synthetase activity was equivalent in both non-epileptic and epileptic human neocortex. Epileptic tissue, however, was characterised by a 37% increase in the density of synaptosomal NMDA receptor sites compared to non-epileptic tissue, as revealed by a radioligand binding assay (B max(non-epileptic) 1.45 pmol/mg protein and B max(epileptic) 1.99 pmol/mg protein, P < 0.05). Our findings shed some doubts on a role of glutamine synthetase in the pathophysiology of epilepsy in the neocortex. However, the detection of a significantly reduced enzymatic activity in the epileptic amygdala supports the assumption that the enzyme defect is localized to the epileptic mesial temporal lobe of corresponding patients.  相似文献   

19.
Recent evidence suggests that cell cycle-related molecules play pivotal roles in multiple forms of cell death in post-mitotic neurons. Nevertheless, it remains unclear what molecular mechanisms are involved in the regulation of expression levels and activities of these molecules. We showed previously that treatment with extracellular glutamate decreases cyclin-dependent kinase inhibitor p27 before neuronal cell death. In this study, we demonstrate that reductions of both p27 and neuronal viability were dependent on activity of calpain, a Ca(2+)-dependent protease, but not on activity of caspase 3. Interestingly, the glutamate-induced reduction of p27 was not dependent on the ubiquitin-proteasome system. In fact, p27 was present only in the neuronal nucleus, whereas calpain 1, a ubiquitous calpain, was observed both in the neuronal nucleus and cytoplasm in control cultures. Glutamate treatment did not change the localization patterns of p27 and calpain 1. It reduced p27 expression level in the nucleus in a calpain-dependent manner. In vitro experiments using neuronal cell lysate and p27 recombinant protein revealed that p27 was degraded as a substrate of activated calpain 1. These results suggest that calpain(s), activated by glutamate treatment, degrade(s) p27 in the nucleus of neurons, which might promote aberrant cell cycle progression.  相似文献   

20.
Mora G  Tapia R 《Neurochemical research》2005,30(12):1557-1565
We have previously shown that microdialysis perfusion of the K+ channel blocker 4-aminopyridine (4-AP) in rat hippocampus induces convulsions and neurodegeneration, due to the stimulation of glutamate release from synaptic terminals. Retigabine is an opener of the KCNQ2/Q3-type K+ channel that possesses antiepileptic action and may be neuroprotective, and we have therefore studied its effect on the hyperexcitation, the neuronal damage and the changes in extracellular glutamate induced by 4-AP. Retigabine and 4-AP were co-administered by microdialysis in the hippocampus of anesthetized rats, with simultaneous recording of the EEG, and the extracellular concentration of glutamate was measured in the microdialysis fractions. In 70–80% of the rats tested retigabine reduced the 4-AP-induced stimulation of glutamate release and prevented the neuronal damage observed at 24 h in the CA1 hippocampal region. However, retigabine did not block the EEG epileptic discharges and their duration was reduced in only 20–25% of the tested animals. We conclude that the neuroprotective action of retigabine is probably due to the blockade of the 4-AP-induced stimulation of glutamate release. This inhibition, however, was not sufficient to block the epileptic activity. Special issue dedicated to Dr. Simo S. Oja  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号