首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
The physical interaction of the human growth factor receptor‐bound protein 14 (hGrb14) and the insulin receptor (IR) represses insulin signaling. With respect to the recruiting mechanism of hGrb14 to IR respond to insulin stimulus, our previous reports have suggested that phosphorylation of Ser358, Ser362, and Ser366 in hGrb14 by glycogen synthase kinase‐3 repressed hGrb14–IR complex formation. In this study, we investigated phosphatase‐mediated dephosphorylation of the hGrb14 phosphoserine residues. An in vitro phosphatase assay with hGrb14‐derived synthetic phosphopeptides suggested that protein phosphatase 1 (PP1) is involved in the dephosphorylation of Ser358 and Ser362. Furthermore, coimmunoprecipitation experiments suggested that insulin‐induced hGrb14–IR complex formation was repressed by the substitution of Ser358 or Ser362 with glutamic acid. These findings suggested that phosphate groups on Ser358 and Ser362 in hGrb14 are dephosphorylated by PP1, and the dephosphorylation facilitates hGrb14–IR complex formation.  相似文献   

2.
The triazine derivative 12459 is a potent G-quadruplex ligand that triggers apoptosis or delayed growth arrest, telomere shortening and G-overhang degradation, as a function of its concentration and time exposure to the cells. We have investigated here the DNA damage response induced by 12459 in A549 cells. Submicromolar concentrations of 12459 triggers a delayed Chk1-ATR–mediated DNA damage response associated with a telomeric dysfunction and a G2/M arrest. Surprisingly, increasing concentrations of 12459 leading to cell apoptosis induced a mechanism that bypasses the DNA damage signaling and leads to the dephosphorylation of Chk1 and γ-H2AX. We identified the phosphatase Protein Phosphatase Magnesium dependent 1D/Wild-type P53-Induced Phosphatase (PPM1D/WIP1) as a factor responsible for this dephosphorylation. SiRNA-mediated depletion of PPM1D/WIP1 reactivates the DNA damage signaling by 12459. In addition, PPM1D/WIP1 is activated by reactive oxygen species (ROS) induced by 12459. ROS generated by 12459 are sufficient to trigger an early DNA damage in A549 cells when PPM1D/WIP1 is depleted. However, ROS inactivation by N-acetyl cysteine (NAC) treatment does not change the apoptotic response induced by 12459. Because PPM1D expression was recently reported to modulate the recruitment of DNA repair molecules, our data would suggest a cycle of futile protection against 12459, thus leading to a delayed mechanism of cell death.  相似文献   

3.
Protein phosphatase, Mg2+/Mn2+ dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC.  相似文献   

4.
Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized. Here, we show that ULK1 and ULK2 are required for proper projection of axons in the forebrain. Mice lacking Ulk1 and Ulk2 in their central nervous systems showed defects in axonal pathfinding and defasciculation affecting the corpus callosum, anterior commissure, corticothalamic axons and thalamocortical axons. These defects impaired the midline crossing of callosal axons and caused hypoplasia of the anterior commissure and disorganization of the somatosensory cortex. The axon guidance defects observed in ulk1/2 double-knockout mice and central nervous system-specific (Nes-Cre) Ulk1/2-conditional double-knockout mice were not recapitulated in mice lacking other autophagy genes (i.e., Atg7 or Rb1cc1 [RB1-inducible coiled-coil 1]). The brains of Ulk1/2-deficient mice did not show stem cell defects previously attributed to defective autophagy in ambra1 (autophagy/Beclin 1 regulator 1)- and Rb1cc1-deficient mice or accumulation of SQSTM1 (sequestosome 1)+ or ubiquitin+ deposits. Together, these data demonstrate that ULK1 and ULK2 regulate axon guidance during mammalian brain development via a noncanonical (i.e., autophagy-independent) pathway.  相似文献   

5.
Cell autophagy and cell apoptosis are both observed in the process of hypoxia-induced ischemic cerebral infarction (ICI). Unc-51 like autophagy activating kinase 1 (Ulk1) and FUN14 Domain-containing Protein 1 (FUNDC1) are both involved in the regulation of cell autophagy. This study aimed to investigate the regulatory effects of Ulk1 and FUNDC1 on hypoxia-induced nerve cell autophagy and apoptosis. Cell viability was measured using cell counting kit-8 (CCK-8) assay. Cell apoptosis was detected using Annexin V-PE/7-ADD staining assay. qRT-PCR was used to quantify the mRNA levels of Ulk1 and FUNDC1 in PC-12 cells. Cell transfection was performed to up-regulate the expression of Ulk1. 3-Methyladenine (3-MA) was used as autophagy inhibitor and rapamycin was used as autophagy activator in our experiments. SP600125 was used as c-Jun N-terminal kinase (JNK) inhibitor. Western blotting was performed to analyze the expression levels of key factors that are related to cell autophagy, apoptosis and JNK pathway. We found that hypoxia simultaneously induced apoptosis and autophagy of PC-12 cells. The activation of Ulk1 and FUNDC1 were also found in PC-12 cells after hypoxia induction. Overexpression of Ulk1 promoted the activation of FUNDC1 and prevented PC-12 cells from hypoxia-induced apoptosis. Suppression of Ulk1 had opposite effects. Furthermore, we also found that JNK pathway participated in the effects of Ulk1 overexpression on PC-12 cell apoptosis reduction. To conclude, Ulk1/FUNDC1 played critical regulatory roles in hypoxia-induced nerve cell autophagy and apoptosis. Overexpression of Ulk1 prevented nerve cells from hypoxia-induced apoptosis by promoting cell autophagy.  相似文献   

6.
7.
8.
Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor‐dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress‐induced cardiac hypertrophy and autophagy. A 48‐hr mechanical stretch and a 4‐week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b‐II and beclin‐1. Our results indicated that HDL significantly reduced mechanical stretch‐induced rise in autophagy as demonstrated by LC3b‐II and beclin‐1. In addition, mechanical stress up‐regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL‐mediated action was assessed using MK‐2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK‐2206 mitigated HDL‐induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress‐induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt‐dependent mechanism.  相似文献   

9.
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function.  相似文献   

10.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

11.
Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP.  相似文献   

12.
ULK1 (unc-51 like kinase 1) is a serine/threonine protein kinase that plays a key role in regulating the induction of autophagy. Recent studies using autophagy-defective mouse models, such as atg5- or atg7-deficient mice, revealed an important function of autophagy in adipocyte differentiation. Suppression of adipogenesis in autophagy-defective conditions has made it difficult to study the roles of autophagy in metabolism of differentiated adipocytes. In this study, we established autophagy defective-differentiated 3T3-L1 adipocytes, and investigated the roles of Ulk1 and its close homolog Ulk2 in lipid and glucose metabolism using the established adipocytes. Through knockdown approaches, we determined that Ulk1 and Ulk2 are important for basal and MTORC1 inhibition-induced autophagy, basal lipolysis, and mitochondrial respiration. However, unlike other autophagy genes (Atg5, Atg13, Rb1cc1/Fip200, and Becn1) Ulk1 was dispensable for adipogenesis without affecting the expression of CCAAT/enhancer binding protein α (CEBPA) and peroxisome proliferation-activated receptor gamma (PPARG). Ulk1 knockdown reduced fatty acid oxidation and enhanced fatty acid uptake, the metabolic changes that could contribute to adipogenesis, whereas Ulk2 knockdown had opposing effects. We also found that the expression levels of insulin receptor (INSR), insulin receptor substrate 1 (IRS1), and glucose transporter 4 (SLC2A4/GLUT4) were increased in Ulk1-silenced adipocytes, which was accompanied by upregulation of insulin-stimulated glucose uptake. These results suggest that ULK1, albeit its important autophagic role, regulates lipid metabolism and glucose uptake in adipocytes distinctly from other autophagy proteins.  相似文献   

13.
The cyclin-dependent kinase inhibitor p21 plays a critical role in regulating cell cycle and cell proliferation. We previously cloned the dog p21 gene and found that unlike human p21, dog p21 is expressed as 2 isoforms due to the proline-directed phosphorylation at serine 123 (S123). Here, we identified that PPM1D, also called Wip1 and a Mg2+-dependent phosphatase, dephosphorylates dog p21 protein at serine 123. Specifically, we showed that the level of S123-phosphorylated dog p21 is increased by a PPM1D inhibitor in a dose-dependent manner. We also showed that over-expression of PPM1D decreases, whereas knockdown of PPM1D increases, the level of S123-phosphorylated dog p21 regardless of p53. Additionally, in vitro phosphatase assay was performed and showed that phosphorylated S123 in dog p21 is dephosphorylated by recombinant rPPM1D, which contains the catalytic domain of human PPM1D (residue 1–420), but not by the phosphatase dead rPPM1D (D314A). Furthermore, dephosphorylation of S123 by rPPM1D can be abrogated by PPM1D inhibitor or by withdrawal of Mg2+. Finally, we showed that upon PPM1D inhibition, the level of S123-phosphorylated dog p21 was increased, concomitantly with decreased expression of cyclin A, cyclin B, Rb, and PCNA. Together, our results indicate that PPM1D functions as a phosphatase of dog p21 at serine 123 and plays a role in cell cycle control via p21.  相似文献   

14.
Proteasome inhibitors are potential therapeutic agents in the treatment of hepatocarcinoma and other liver diseases. The analysis of alternative protein phosphorylation states might contribute to elucidate the underlying mechanisms of proteasome inhibitor‐induced apoptosis. We have investigated the response of mouse liver progenitor‐29 (MLP‐29) cells to MG132 using a combination of phosphoprotein affinity chromatography, DIGE, and nano LC‐MS/MS. Thirteen unique deregulated phosphoproteins involved in chaperone activity, stress response, mRNA processing and cell cycle control were unambiguously identified. Alterations in NDRG1 and stathmin suggest new mechanisms associated to proteasome inhibitor‐induced apoptosis in MLP‐29 cells. Particularly, a transient modification of the phosphorylation state of Ser16, Ser25 and Ser38, which are involved in the regulation of stathmin activity, was detected in three distinct isoforms upon proteasome inhibition. The parallel deregulation of calcium/calmodulin‐activated protein kinase II, extracellular regulated kinase‐1/2 and cyclin‐dependent kinase‐2, might explain the modified phosphorylation pattern of stathmin. Interestingly, stathmin phosphorylation profile was also modified in response to epoxomicin treatment, a more specific proteasome inhibitor. In summary, we report here data supporting that regulation of NDRG1 and stathmin by phosphorylation at specific Ser/Thr residues may participate in the cellular response induced by proteasome inhibitors.  相似文献   

15.
The cyclin-dependent kinase inhibitor p21 plays a critical role in regulating cell cycle and cell proliferation. We previously cloned the dog p21 gene and found that unlike human p21, dog p21 is expressed as 2 isoforms due to the proline-directed phosphorylation at serine 123 (S123). Here, we identified that PPM1D, also called Wip1 and a Mg2+-dependent phosphatase, dephosphorylates dog p21 protein at serine 123. Specifically, we showed that the level of S123-phosphorylated dog p21 is increased by a PPM1D inhibitor in a dose-dependent manner. We also showed that over-expression of PPM1D decreases, whereas knockdown of PPM1D increases, the level of S123-phosphorylated dog p21 regardless of p53. Additionally, in vitro phosphatase assay was performed and showed that phosphorylated S123 in dog p21 is dephosphorylated by recombinant rPPM1D, which contains the catalytic domain of human PPM1D (residue 1–420), but not by the phosphatase dead rPPM1D (D314A). Furthermore, dephosphorylation of S123 by rPPM1D can be abrogated by PPM1D inhibitor or by withdrawal of Mg2+. Finally, we showed that upon PPM1D inhibition, the level of S123-phosphorylated dog p21 was increased, concomitantly with decreased expression of cyclin A, cyclin B, Rb, and PCNA. Together, our results indicate that PPM1D functions as a phosphatase of dog p21 at serine 123 and plays a role in cell cycle control via p21.  相似文献   

16.
17.
In human monocytes, Toll‐like receptor (TLR) 2/1 activation leads to vitamin D3‐dependent antimycobacterial activities, but the molecular mechanisms by which TLR2/1 stimulation induces antimicrobial activities against mycobacteria remain unclear. Here we show that TLR2/1/CD14 stimulation by mycobacterial lipoprotein LpqH can robustly activate antibacterial autophagy through vitamin D receptor signalling activation and cathelicidin induction. We found that CCAAT/enhancer‐binding protein (C/EBP)‐β‐dependent induction of 25‐hydroxycholecalciferol‐1α‐hydroxylase (Cyp27b1) hydroxylase was critical for LpqH‐induced cathelicidin expression and autophagy. In addition, increases in intracellular calcium following AMP‐activated protein kinase (AMPK) activation played a crucial role in LpqH‐induced autophagy. Moreover, AMPK‐dependent p38 mitogen‐activated protein kinase (MAPK) activation was required for LpqH‐induced Cyp27b1 expression and autophagy activation. Collectively, these data suggest that TLR2/1/CD14‐Ca2+‐AMPK‐p38 MAPK pathways contribute to C/EBP‐β‐dependent expression of Cyp27b1 and cathelicidin, which played an essential role in LpqH‐induced autophagy. Furthermore, these results establish a previously uncharacterized signalling pathway of antimycobacterial host defence through a functional link of TLR2/1/CD14‐dependent sensing to the induction of autophagy.  相似文献   

18.
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1   总被引:3,自引:0,他引:3  
Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.  相似文献   

19.
20.
Sugars increase with drought stress in plants and accumulate in the vacuole. However, the exact molecular mechanism underlying this process is not clear yet. In this study, protein interaction and phosphorylation experiments were conducted for sucrose transporter and CIPK kinase in apple. The specific phosphorylation site of sucrose transporter was identified with mass spectrometry. Transgenic analyses were performed to characterize their biological function. It was found that overexpression of sucrose transporter gene MdSUT2.2 in apple plants promoted sugar accumulation and drought tolerance. MdSUT2.2 protein was phosphorylated at Ser381 site in response to drought. A DUALmembrane system using MdSUT2.2 as bait through an apple cDNA library got a protein kinase MdCIPK22. Bimolecular fluorescence complementary (BiFC), pull‐down and co‐immunoprecipitation (Co‐IP) assays further demonstrated that MdCIPK22 interacted with MdSUT2.2. A series of transgenic analysis showed that MdCIPK22 was required for the drought‐induced phosphylation at Ser381 site of MdSUT2.2 protein, and that it enhanced the stability and transport activity of MdSUT2.2 protein. Finally, it was found that MdCIPK22 overexpression promoted sugar accumulation and improved drought tolerance in an MdSUT2.2‐dependent manner in transgenic apple plants. MdCIPK22‐MdSUT2.2 regulatory module shed light on the molecular mechanism by which plant accumulates sugars and enhances tolerance in response to drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号