首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
PML regulates p53 stability by sequestering Mdm2 to the nucleolus   总被引:12,自引:0,他引:12  
The promyelocytic leukaemia (PML) tumour-suppressor protein potentiates p53 function by regulating post-translational modifications, such as CBP-dependent acetylation and Chk2-dependent phosphorylation, in the PML-Nuclear Body (NB). PML was recently shown to interact with the p53 ubiquitin-ligase Mdm2 (refs 4-6); however, the mechanism by which PML regulates Mdm2 remains unclear. Here, we show that PML enhances p53 stability by sequestering Mdm2 to the nucleolus. We found that after DNA damage, PML and Mdm2 accumulate in the nucleolus in an Arf-independent manner. In addition, we found that the nucleolar localization of PML is dependent on ATR activation and phosphorylation of PML by ATR. Notably, in Pml(-/-) cells, sequestration of Mdm2 to the nucleolus was impaired, as well as p53 stabilization and the induction of apoptosis. Furthermore, we demonstrate that PML physically associates with the nucleolar protein L11, and that L11 knockdown impairs the ability of PML to localize to nucleoli after DNA damage. These findings demonstrate an unexpected role of PML in the nucleolar network for tumour suppression.  相似文献   

2.
The p53 tumour suppressor has a key role in the control of cell growth and differentiation, and in the maintenance of genome integrity. p53 is kept labile under normal conditions, but in response to stresses, such as DNA damage, it accumulates in the nucleus for induction of cell-cycle arrest, DNA repair or apoptosis. Mdm2 is an ubiquitin ligase that promotes p53 ubiquitination and degradation. Mdm2 is also self-ubiquitinated and degraded. Here, we identified a novel cascade for the increase in p53 level in response to DNA damage. A new SUMO-specific protease, SUSP4, removed SUMO-1 from Mdm2 and this desumoylation led to promotion of Mdm2 self-ubiquitination, resulting in p53 stabilization. Moreover, SUSP4 competed with p53 for binding to Mdm2, also resulting in p53 stabilization. Overexpression of SUSP4 inhibited cell growth, whereas knockdown of susp4 by RNA interference (RNAi) promoted of cell growth. UV damage induced SUSP4 expression, leading to an increase in p53 levels in parallel with a decrease in Mdm2 levels. These findings establish a new mechanism for the elevation of cellular p53 levels in response to UV damage.  相似文献   

3.
MdmX protects p53 from Mdm2-mediated degradation   总被引:10,自引:0,他引:10       下载免费PDF全文
The p53 tumor suppressor protein is stabilized in response to cellular stress, resulting in activation of genes responsible for either cell cycle arrest or apoptosis. The cellular pathway for releasing normal cells from p53-dependent cell cycle arrest involves the Mdm2 protein. Recently, a p53-binding protein with homology to Mdm2 was identified and called MdmX. Like Mdm2, MdmX is able to bind p53 and inhibit p53 transactivation; however, the ability of MdmX to degrade p53 has yet to be examined. We report here that MdmX is capable of associating with p53 yet is unable to facilitate nuclear export or induce p53 degradation. In addition, expression of MdmX can reverse Mdm2-targeted degradation of p53 while maintaining suppression of p53 transactivation. Using a series of MdmX deletions, we have determined that there are two distinct domains of the MdmX protein that can stabilize p53 in the presence of Mdm2. One domain requires MdmX interaction with p53 and results in the retention of both proteins within the nucleus and repression of p53 transactivation. The second domain involves the MdmX ring finger and results in stabilization of p53 and an increase in p53 transactivation. The potential basis for stabilization and increased p53 transactivation by the MdmX ring finger domain is discussed. Based on these observations, we propose that the MdmX protein may function to maintain a nuclear pool of p53 protein in undamaged cells.  相似文献   

4.
Respiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival. A critical negative regulator of p53 is murine double minute 2 (Mdm2), an E3 ubiquitin ligase that targets p53 for proteasome degradation. Mdm2 is activated by phospho-Akt, and we previously showed that RSV activates Akt and delays apoptosis in primary human airway epithelial cells. In this study, we explore further the mechanism by which RSV regulates p53 to delay apoptosis but paradoxically enhance inflammation. We found that RSV activates Mdm2 1-6 h after infection resulting in a decrease in p53 6-24 h after infection. The p53 down-regulation correlates with increased airway epithelial cell longevity. Importantly, inhibition of the PI3K/Akt pathway blocks the activation of Mdm2 by RSV and preserves the p53 response. The effects of RSV infection are antagonized by Nutlin-3, a specific chemical inhibitor that prevents the Mdm2/p53 association. Nutlin-3 treatment increases endogenous p53 expression in RSV infected cells, causing earlier cell death. This same increase in p53 enhances viral replication and limits the inflammatory response as measured by IL-6 protein. These findings reveal that RSV decreases p53 by enhancing Akt/Mdm2-mediated p53 degradation, thereby delaying apoptosis and prolonging survival of airway epithelial cells.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The p53 protein is kept labile under normal conditions. This regulation is governed largely by its major negative regulator, Mdm2. In response to stress however, p53 accumulates and becomes activated. For this to occur, the inhibitory effects of Mdm2 have to be neutralized. Here we investigated the role of the promyelocytic leukemia protein (PML) in the activation of p53 in response to stress. We found that PML is critical for the accumulation of p53 in response to DNA damage under physiological conditions. PML protects p53 from Mdm2-mediated ubiquitination and degradation, and from inhibition of apoptosis. PML neutralizes the inhibitory effects of Mdm2 by prolonging the stress-induced phosphorylation of p53 on serine 20, a site of the checkpoint kinase 2 (Chk2). PML recruits Chk2 and p53 into the PML nuclear bodies and enhances p53/Chk2 interaction. Our results provide a novel mechanistic explanation for the cooperation between PML and p53 in response to DNA damage.  相似文献   

13.
14.
15.
16.
p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels. However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.  相似文献   

17.
Acetylation is indispensable for p53 activation   总被引:1,自引:0,他引:1  
Tang Y  Zhao W  Chen Y  Zhao Y  Gu W 《Cell》2008,133(4):612-626
The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 interaction and enables the p53-mediated stress response.  相似文献   

18.
The p53 protein averts tumor formation by preventing the proliferation of damaged cells. The presence of functional p53 is critical for efficient and proper cellular responses to a variety of stress conditions. Interestingly, p63 and p73, which are the homologous ancestors of p53, retain a broader set of activities than their progeny, particularly during early embryonic development. The link of these homologues to cancer and their effect on p53 tumor suppression is only beginning to be unravelled. The tight regulation of p53 is governed by the Mdm2 E3 ligase, but also by at least two other E3 ligases. Recent findings suggest fine-tuning of p53 regulation through changes in the ratio of p53 and Mdm2. This regulation of p53 is modulated by the Mdm2 homologue, Mdmx. Genetic studies reveal the critical role Mdmx plays in p53 regulation, although the mode of action is yet to be fully explored. The relief of p53 from this tight regulation is imperative in order for it to respond to stress signals. An intriguing player in this process is the prolyl isomerase Pin1, which induces a conformational change in p53, and more recently identified, also in p73, in response to DNA damage. This complex network of regulation emerges as a family affair. This wealth of knowledge has been translated into the development of novel anti-cancer strategies based on the p53 status in the cancer cell.  相似文献   

19.
Mdm2 acts as a major regulator of the tumor suppressor p53 by targeting its destruction. Here, we show that the mdm2 gene is also regulated by the Ras-driven Raf/MEK/MAP kinase pathway, in a p53-independent manner. Mdm2 induced by activated Raf degrades p53 in the absence of the Mdm2 inhibitor p19ARF. This regulatory pathway accounts for the observation that cells transformed by oncogenic Ras are more resistant to p53-dependent apoptosis following exposure to DNA damage. Activation of the Ras-induced Raf/MEK/MAP kinase may therefore play a key role in suppressing p53 during tumor development and treatment. In primary cells, Raf also activates the Mdm2 inhibitor p19ARF. Levels of p53 are therefore determined by opposing effects of Raf-induced p19ARF and Mdm2.  相似文献   

20.
Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号