首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aberrant centrosome organisation with ensuing alterations of microtubule nucleation capacity enables tumour cells to proliferate and invade despite increased genomic instability. CEP192 is a key factor in the initiation process of centrosome duplication and in the control of centrosome microtubule nucleation. However, regulatory means of CEP192 have remained unknown. Here, we report that FBXL13, a binding determinant of SCF (SKP1‐CUL1‐F‐box)‐family E3 ubiquitin ligases, is enriched at centrosomes and interacts with the centrosomal proteins Centrin‐2, Centrin‐3, CEP152 and CEP192. Among these, CEP192 is specifically targeted for proteasomal degradation by FBXL13. Accordingly, induced FBXL13 expression downregulates centrosomal γ‐tubulin and disrupts centrosomal microtubule arrays. In addition, depletion of FBXL13 induces high levels of CEP192 and γ‐tubulin at the centrosomes with the consequence of defects in cell motility. Together, we characterise FBXL13 as a novel regulator of microtubule nucleation activity and highlight a role in promoting cell motility with potential tumour‐promoting implications.  相似文献   

2.
Centrioles function in the assembly of centrosomes and cilia. Structural and numerical centrosome aberrations have long been implicated in cancer, and more recent genetic evidence directly links centrosomal proteins to the etiology of ciliopathies, dwarfism and microcephaly. To better understand these disease connections, it will be important to elucidate the biogenesis of centrioles as well as the controls that govern centriole duplication during the cell cycle. Moreover, it remains to be fully understood how these organelles organize a variety of dynamic microtubule-based structures in response to different physiological conditions. In proliferating cells, centrosomes are crucial for the assembly of microtubule arrays, including mitotic spindles, whereas in quiescent cells centrioles function as basal bodies in the formation of ciliary axonemes. In this short review, we briefly introduce the key gene products required for centriole duplication. Then we discuss recent findings on the centriole duplication factor STIL that point to centrosome amplification as a potential root cause for primary microcephaly in humans. We also present recent data on the role of a disease-related centriole-associated protein complex, Cep164-TTBK2, in ciliogenesis.  相似文献   

3.
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.  相似文献   

4.
CEP215 is a human orthologue of Drosophila centrosomin which is a core centrosome component for the pericentriolar matrix protein recruitment. Recent investigations revealed that CEP215 is required for centrosome cohesion, centrosomal attachment of the g-TuRC, and microtubule dynamics. However, it remains to be obscure how CEP215 functions for recruitment of the centrosomal proteins during the centrosome cycle. Here, we investigated a role of CEP215 during mitosis. Knockdown of CEP215 resulted in characteristic mitotic phenotypes, including monopolar spindle formation, a decrease in distance between the spindle pole pair, and detachment of the centrosomes from the spindle poles. We noticed that CEP215 is critical for centrosomal localization of dynein throughout the cell cycle. As a consequence, the selective centrosomal proteins were not recruited to the centrosome properly. Finally, the centrosomal localization of CEP215 also depends on the dynein-dynactin complex. Based on the results, we propose that CEP215 regulates a dynein-dependent transport of the pericentriolar matrix proteins during the centrosome maturation.  相似文献   

5.
The regulatory mechanism of centrosome function is crucial to the accurate transmission of chromosomes to the daughter cells in mitosis. Recent findings on the posttranslational modifications of many centrosomal proteins led us to speculate that these modifications might be involved in centrosome behavior. Poly(ADP-ribose) polymerase 1 (PARP-1) catalyzes poly(ADP-ribosyl)ation to various proteins. We show here that PARP-1 localizes to centrosomes and catalyzes poly(ADP-ribosyl)ation of centrosomal proteins. Moreover, centrosome hyperamplification is frequently observed with PARP inhibitor, as well as in PARP-1-null cells. Thus, it is possible that chromosomal instability known in PARP-1-null cells can be attributed to the centrosomal dysfunction. P53 tumor suppressor protein has been also shown to be localized at centrosomes and to be involved in the regulation of centrosome duplication and monitoring of the chromosomal stability. We found that centrosomal p53 is poly(ADP-ribosyl)ated in vivo and centrosomal PARP-1 directly catalyzes poly(ADP-ribosyl)ation of p53 in vitro. These results indicate that PARP-1 and PARP-1-mediated poly(ADP-ribosyl)ation of centrosomal proteins are involved in the regulation of centrosome function.  相似文献   

6.
Isolation of centrosomes from human cells has revealed a proteic pattern which is both complex and specific. As the most prominent structural element of centrosomes in animal cells, the centriole which is present as two copies, is a highly conserved structure, we have attempted to identify centrosomal proteins on the basis of immunocross-reaction with proteins identified in basal bodies from lower eucaryotes. We report that two antibodies, one raised against the Ca(+)-binding protein centrin (Salisbury, J. L., A. T. Baron, B. Surek, and M. Melkonian. 1984. J. Cell Biol. 99:962-970) and the other directed against a 230-kD protein isolated from the infraciliary cytoskeletal lattice of the protozoan Polyplastron m., decorate the centrosome of human cultured cells, and identify one of the major centrosomal components revealed as a doublet of 62/64 kD. Moreover the nucleation reaction of microtubules, which can be efficiently produced on isolated centrosomes, is blocked by the antibodies, a result which strongly implicates the 62/64-kD protein in this centrosomal activity. We also show that the 62/64-kD protein remains insoluble in conditions (0.5 M KI or 8 M urea) which are capable of extracting most of the centrosomal proteins. Immunocytochemical localization by EM of isolated centrosomes revealed the association of this 62/64-kD doublet with the intercentriolar link and the pericentriolar lattice. Our results suggest that conservation of structure in the centrosome from divergent organisms could be matched by conservation of proteins and activity, evidence for the maintenance of a specific function, which could involve Ca2+, associated with the microtubule organizing centers.  相似文献   

7.
Centrosome reduction during gametogenesis and its significance   总被引:1,自引:0,他引:1  
Animal spermatids and primary oocytes initially have typical centrosomes comprising pairs of centrioles and pericentriolar fibrous centrosomal proteins. These somatic cell-like centrosomes are partially or completely degenerated during gametogenesis. Centrosome reduction during spermiogenesis comprises attenuation of microtubule nucleation function, loss of pericentriolar material, and centriole degeneration. Centrosome reduction during oogenesis is due to complete degeneration of centrioles, which leads to dispersal of the pericentriolar centrosomal proteins, loss of replicating capacity of the spindle poles, and switching to acentrosomal mode of spindle organization. Oocyte centrosome reduction plays an important role in preventing parthenogenetic embryogenesis and balancing centrosome number in the embryonic cells.  相似文献   

8.
《The Journal of cell biology》1995,131(5):1261-1273
CP190, a protein of 1,096 amino acids from Drosophila melanogaster, oscillates in a cell cycle-specific manner between the nucleus during interphase, and the centrosome during mitosis. To characterize the regions of CP190 responsible for its dynamic behavior, we injected rhodamine-labeled fusion proteins spanning most of CP190 into early Drosophila embryos, where their localizations were characterized using time-lapse fluorescence confocal microscopy. A single bipartite 19- amino acid nuclear localization signal was detected that causes nuclear localization. Robust centrosomal localization is conferred by a separate region of 124 amino acids; two adjacent, nonoverlapping fusion proteins containing distinct portions of this region show weaker centrosomal localization. Fusion proteins that contain both nuclear and centrosomal localization sequences oscillate between the nucleus and the centrosome in a manner identical to native CP190. Fusion proteins containing only the centrosome localization sequence are found at centrosomes throughout the cell cycle, suggesting that CP190 is actively recruited away from the centrosome by its movement into the nucleus during interphase. Both native and bacterially expressed CP190 cosediment with microtubules in vitro. Tests with fusion proteins show that the domain responsible for microtubule binding overlaps the domain required for centrosomal localization. CP60, a protein identified by its association with CP190, also localizes to centrosomes and to nuclei in a cell cycle-dependent manner. Experiments in which colchicine is used to depolymerize microtubules in the early Drosophila embryo demonstrate that both CP190 and CP60 are able to attain and maintain their centrosomal localization in the absence of microtubules.  相似文献   

9.
Background information. Centrosome duplication normally parallels with DNA replication and is responsible for correct segregation of replicated DNA into the daughter cells. Although geminin interacts with Cdt1 to prevent loading of MCMs (minichromosome maintenance proteins) on to the replication origins, inactivation of geminin nevertheless causes centrosome over‐duplication in addition to the re‐replication of the genome, suggesting that geminin may play a role in centrosome duplication. However, the exact mechanism by which loss of geminin affects centrosomal duplication remains unclear and the possible direct interaction of geminin with centrosomal‐localized proteins is still unidentified. Results. We report in the present study that geminin is physically localized to the centrosome. This unexpected geminin localization is cell‐cycle dependent and mediated by the actin‐related protein, Arp1, one subunit of the dynein—dynactin complex. Disruption of the integrity of the dynein—dynactin complex by overexpression of dynamitin/p50, a well‐characterized inhibitor of dynactin, reduces the centrosomal localization of both geminin and Arp1. Enrichment of geminin on centrosomes was enhanced when cellular ATP production was suppressed in the ATP‐inhibitor assay, whereas the accumulation of geminin on the centrosome was disrupted by depolymerization of the microtubules using nocodazole. We further demonstrate that the coiled‐coil motif of geminin is required for its centrosomal localization and the interaction of geminin with Arp1. Depletion of geminin by siRNA (small interfering RNA) in MDA‐MB‐231 cells led to centrosome over‐duplication. Conversely, overexpression of geminin inhibits centrosome over‐duplication induced by HU in S‐phase‐arrested cells, and the coiled‐coil‐motif‐mediated centrosomal localization of geminin is required for its inhibition of centrosome over‐duplication. Centrosomal localization of geminin is conserved among mammalian cells and geminin might perform as an inhibitor of centrosome duplication. Conclusions. The results of the present study demonstrate that a fraction of geminin is localized on the centrosome, and the centrosomal localization of geminin is Arp1‐mediated and dynein—dynactin‐dependent. The coiled‐coil motif of geminin is required for its targeting to the centrosome and inhibition of centrosome duplication. Thus the centrosomal localization of geminin might perform an important role in regulation of proper centrosome duplication.  相似文献   

10.
Extra centrosomes are found in many tumors, and their appearance is an early event that can generate aberrant mitotic spindles and aneuploidy. Because the failure to appropriately degrade the Mps1 protein kinase correlates with centrosome overproduction in tumor-derived cells, defects in the factors that promote Mps1 degradation may contribute to extra centrosomes in tumors. However, while we have recently characterized an Mps1 degradation signal, the factors that regulate Mps1 centrosomal Mps1 are unknown. Antizyme (OAZ), a mediator of ubiquitin-independent degradation and a suspected tumor suppressor, was recently shown to localize to centrosomes and modulate centrosome overproduction, but the known OAZ substrates were not responsible for its effect on centrosomes. We have found that OAZ exerts its effect on centrosomes via Mps1. OAZ promotes the removal of Mps1 from centrosomes, and centrosome overproduction caused by reducing OAZ activity requires Mps1. OAZ binds to Mps1 via the Mps1 degradation signal and modulates the function of Mps1 in centrosome overproduction. Moreover, OAZ regulates the canonical centrosome duplication cycle, and reveals a function for Mps1 in procentriole assembly. Together, our data suggest that OAZ restrains the assembly of centrioles by controlling the levels of centrosomal Mps1 through the Cdk2-regulated Mps1 degradation signal.  相似文献   

11.
Many differentiated cells including polarised epithelial cells display a non-radial, apico-basal microtubule array. In some cells the centrosome disassembles and new nucleating sites are created at more appropriate locations. In others the centrosome remains, but relatively few microtubules radiate from it's immediate environs. Instead, the majority of the microtubule minus-ends are associated with apical cell surface sites. Centrosomal microtubule release and capture is evidently a mechanism exploited by some polarised epithelial cells as a means of producing non-centrosomal, apico-basal microtubule arrays. This involves microtubule nucleation at the centrosome, release and subsequent translocation and capture at the apical sites. Two functionally distinct centrosomal complexes dedicated to the control of microtubule nucleation and anchorage have been suggested to be essential and universal features of all centrosomes. The centrosomal proteins ninein and R2 are potential microtubule anchoring proteins and their discovery has exciting implications for centrosomal organisation and microtubule positioning in cells.  相似文献   

12.
13.
Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.  相似文献   

14.
vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2   总被引:1,自引:0,他引:1  
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubule and the kinetochore. Our recent ultrastructural studies demonstrated a dynamic distribution of TTK, from the kinetochore to the centrosome, as cell enters into anaphase. Here, we show that a centrosomal protein TACC2 is phosphorylated in mitosis by TTK signaling pathway. TACC2 was pulled down by wild type TTK but not kinase death mutant, suggesting the potential phosphorylation-mediated interaction between these two proteins. Our immunofluorescence studies revealed that both TTK and TACC2 are located to the centrosome. Interestingly, expression of kinase death mutant of TTK eliminated the centrosomal localization of TACC2 but not other centrosomal proteins such as gamma-tubulin and NuMA, a phenotype seen in TTK-depleted cells. In these centrosomal TACC2-liberated cells, chromosomes were lagging and mis-aligned. In addition, the distance between two centrosomes was markedly reduced, suggesting that centrosomal TACC2 is required for mitotic spindle maintenance. The inter-relationship between TTK and TACC2 established here provides new avenue to study centrosome and spindle dynamics underlying cell divisional control.  相似文献   

15.
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well‐established non‐centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin‐ and RNA‐binding proteins. In total, we assigned novel centrosome‐related functions to 24 proteins and confirmed 13 of these in human cells.  相似文献   

16.
Parthenogenesis in Xenopus eggs requires centrosomal integrity   总被引:9,自引:4,他引:5       下载免费PDF全文
Xenopus eggs are laid arrested at second metaphase of meiosis lacking a functional centrosome. Upon fertilization, the sperm provides the active centrosome that is required for cleavage to occur. The injection of purified centrosomes mimics fertilization and leads to tadpole formation (parthenogenesis). In this work we show that the parthenogenetic activity of centrosomes is inactivated by urea concentrations higher than 2 M. The loss of activity is correlated with a progressive destruction of the centriolar cylinder and extraction of proteins. This shows that centrosomes are relatively sensitive to urea since complete protein unfolding and solubilization of proteins normally occurs at urea concentrations as high as 8-10 M. When present, the parthenogenetic activity is always associated with a pelletable fraction showing that it cannot be solubilized by urea. The parthenogenetic activity is progressively inactivated by salt concentrations higher than 2 M (NaCl or KCl). However, only a few proteins are extracted by these treatments and the centrosome ultrastructure is not affected. This shows that both parthenogenetic activity and centrosomal structure are resistant to relatively high ionic strength. Indeed, most protein structures held by electrostatic forces are dissociated by 2 M salt. The loss of parthenogenetic activity produced at higher salt concentrations, while the structure of the centrosome is unaffected, is an apparent paradox. We interpret this result as meaning that the native state of centrosomes is held together by forces that favor functional denaturation by high ionic strength. The respective effects of urea and salts on centrosomal structure and activity suggest that the centrosome is mainly held together by hydrogen and hydrophobic bonds. The in vitro microtubule nucleating activity of centrosomes can be inactivated at salt or urea concentrations that do not affect the parthenogenetic activity. Since egg cleavage requires the formation of microtubule asters, we conclude that the extracted or denatured microtubule nucleating activity of centrosomes can be complemented by components present in the egg cytoplasm. Both parthenogenetic and microtubule nucleating activities are abolished by protease treatments but resist nuclease action. Since we find no RNA in centrosomes treated by RNase, they probably do not contain a protected RNA. Taken together, these results are consistent with the idea that the whole or part of the centrosome structure acts as a seed to start the centrosome duplication cycle in Xenopus eggs.  相似文献   

17.
The centrosome is the main MT organizing center in animal cells, and has traditionally been regarded as essential for organization of the bipolar spindle that facilitates chromosome segregation during mitosis. Centrosomes are associated with the poles of the mitotic spindle, and several cell types require these organelles for spindle formation. However, most plant cells and some female meiotic systems get along without this organelle, and centrosome‐independent spindle assembly has now been identified within some centrosome containing cells. How can such observations, which point to mutually incompatible conclusions regarding the requirement of centrosomes in spindle formation, be interpreted? With emphasis on the functional role of centrosomes, this article summarizes the current models of spindle formation, and outlines how observations obtained from spindle assembly assays in vitro may reconcile conflicting opinions about the mechanism of spindle assembly. It is further described how Drosophila mutants are used to address the functional interrelationships between individual centrosomal proteins and spindle formation in vivo. © 2004 Wiley‐Liss, Inc.  相似文献   

18.
Supernumerary centrosomes promote the assembly of abnormal mitotic spindles in many human tumors. In human cells, overexpression of the cyclin-dependent kinase (Cdk)2 partner cyclin A during a prolonged S phase produces extra centrosomes, called centrosome reduplication. Cdk2 activity protects the Mps1 protein kinase from proteasome-mediated degradation, and we demonstrate here that Mps1 mediates cyclin A-dependent centrosome reduplication. Overexpression of cyclin A or a brief proteasome inhibition increases the centrosomal levels of Mps1, whereas depletion of Cdk2 leads to the proteasome-dependent loss of Mps1 from centrosomes only. When a Cdk2 phosphorylation site within Mps1 (T468) is mutated to alanine, Mps1 cannot accumulate at centrosomes or participate in centrosome duplication. In contrast, phosphomimetic mutations at T468 or deletion of the region surrounding T468 prevent the proteasome-dependent removal of Mps1 from centrosomes in the absence of Cdk2 activity. Moreover, cyclin A-dependent centrosome reduplication requires Mps1, and these stabilizing Mps1 mutations cause centrosome reduplication, bypassing cyclin A. Together, our data demonstrate that the region surrounding T468 contains a motif that regulates the accumulation of Mps1 at centrosomes. We suggest that phosphorylation of T468 attenuates the degradation of Mps1 at centrosomes and that preventing this degradation is necessary and sufficient to cause centrosome reduplication in human cells.  相似文献   

19.
The maternally expressed C. elegans gene spd-5 encodes a centrosomal protein with multiple coiled-coil domains. During mitosis in mutants with reduced levels of SPD-5, microtubules assemble but radiate from condensed chromosomes without forming a spindle, and mitosis fails. SPD-5 is required for the centrosomal localization of gamma-tubulin, XMAP-215, and Aurora A kinase family members, but SPD-5 accumulates at centrosomes in mutants lacking these proteins. Furthermore, SPD-5 interacts genetically with a dynein heavy chain. We propose that SPD-5, along with dynein, is required for centrosome maturation and mitotic spindle assembly.  相似文献   

20.
The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO) cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm). Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号