共查询到20条相似文献,搜索用时 0 毫秒
1.
肿瘤干细胞是指存在于肿瘤组织中的具有干细胞特性,即能够多向分化和自我更新的一类细胞群。随着肿瘤干细胞概念的提出,乳腺癌干细胞成为当今科研领域的一个研究热点。因此,了解如何分选乳腺癌干细胞及如何维持其"干性"对治疗及预防乳腺癌具有至关重要的意义。主要从乳腺癌干细胞分选、相关信号通路、上皮-间充质转换(EMT)等方面进行综述。 相似文献
2.
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. Given the heterogeneity of mutations in cancer cells, considerable focus has been directed toward characterizing metastasis genes in the context of relevant signaling pathways rather than treating genes as independent and equal entities. One signaling cascade implicated in the regulation of cell growth, invasion and metastasis is the MAP kinase pathway. Raf kinase inhibitory protein (RKIP) functions as an inhibitor of the MAP kinase pathway and is a metastasis suppressor in different cancer models. By utilizing statistical analysis of clinical data integrated with experimental validation, we recently identified components of the RKIP signaling pathway relevant to breast cancer metastasis. Using the RKIP pathway as an example, we show how prior biological knowledge can be efficiently combined with genome-wide patient data to identify gene regulatory mechanisms that control metastasis. 相似文献
3.
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. Given the heterogeneity of mutations in cancer cells, considerable focus has been directed toward characterizing metastasis genes in the context of relevant signaling pathways rather than treating genes as independent and equal entities. One signaling cascade implicated in the regulation of cell growth, invasion and metastasis is the MAP kinase pathway. Raf kinase inhibitory protein (RKIP) functions as an inhibitor of the MAP kinase pathway and is a metastasis suppressor in different cancer models. By utilizing statistical analysis of clinical data integrated with experimental validation, we recently identified components of the RKIP signaling pathway relevant to breast cancer metastasis. Using the RKIP pathway as an example, we show how prior biological knowledge can be efficiently combined with genome-wide patient data to identify gene regulatory mechanisms that control metastasis. 相似文献
4.
雌激素受体信号通路在调控乳腺细胞增殖和凋亡等生理机能中发挥重要功能,该通路出现调控异常时可导致乳腺癌发生。雌激素受体在乳腺癌发生中的作用机制包括核受体介导的基因组信号通路和膜受体介导的非基因组信号通路以及二者的相互作用。基于雌激素受体信号通路及其关键信号分子的靶向治疗是开展乳腺癌治疗的重要策略与有效途径。对雌激素受体结构以及雌激素受体信号通路在乳腺癌发生和治疗中的作用作一综述。 相似文献
6.
The transmembrane protein with epidermal growth factor (EGF) and two follistatin (FS) motifs 2 (TMEFF2) has a limited tissue distribution with strong expression only in brain and prostate. While TMEFF2 is overexpressed in prostate cancer indicating an oncogenic role, several studies indicate a tumor suppressor role for this protein. This dual mode of action is, at least in part, the result of metalloproteinase-dependent shedding that generates a soluble TMEFF2 ectodomain with a growth promoting function. While recent studies have shed some light on the biology of different forms of TMEFF2, little is known about the molecular mechanisms that influence its oncogenic/tumor suppressive function. In several non-prostate cell lines, it has been shown that a recombinant form of the TMEFF2 ectodomain can interact with platelet derived growth factor (PDGF)-AA to suppress PDGF receptor signaling and can promote ErbB4 and ERK1/2 phosphorylation. However, the role of the full length TMEFF2 in these pathways has not been examined. Using prostate cell lines, here we examine the role of TMEFF2 in ERK and Akt activation, two pathways implicated in prostate cancer progression and that have been shown to cross talk in several cancers. Our results show that different forms of TMEFF2 distinctly affect Akt and ERK activation and this may contribute to a different cellular response of either proliferation or tumor suppression. 相似文献
7.
Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen‐activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time‐resolved phosphorylation site dynamics after pathway co‐stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone‐induced down‐regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways. 相似文献
8.
Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are responsible for the regulation of pluripotency and differentiation.During embryonic development,these pathways govern cell fate specifications as well as the formation of tissues and organs.In adulthood,their normal functions are important for tissue homeostasis and regeneration,whereas aberrations result in diseases,such as cancer and degenerative disorders.In complex biological systems,stem cell signaling pathways work in concert as a network and exhibit crosstalk,such as the negative crosstalk between Wnt and Notch.Over the past decade,genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways.Indeed,discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry.Remarkable progress has been made and several promising drug candidates have entered into clinical trials.This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways. 相似文献
9.
Whilst investigators have clearly shown that non-hereditary factors dominate the aetiology of human breast cancer, they have failed to identify quantitatively important causes, and prospects for prevention remain indeed. However, progress in epidemiological and basic research has taken place during the last few years. Current evidence suggests that breast cancer may be affected by the intra-uterine environment, that exposures during adolescence are particularly important, and that pregnancy has a dual effect on breast cancer risk: an early increase followed by long-term protection. Great variation exists in the structural development of the breast ductal system already in the newborn — and by inference in utero — and a pregnancy induces permanent structural changes in the mammary gland. We suggest that these observations fit into an aetiological model with the following key components: (1) breast cancer risk depends on the number of cells at risk, the susceptibility of individual cells to malignant transformation, and on the degree of cellular proliferation, notably cells which can act as founders of breast cancer; (2) the number of target cells is determined by the hormonal environment mainly early in life, perhaps already in utero; (3) in adult life, hormones which are non-genotoxic, increase breast cancer risk by increasing selective cell proliferation and thus number of target cells and the risk of retention of spontaneous somatic mutations; (4) while a pregnancy stimulates the growth of already malignant cells to malignant transformation (and thereby entails a short-term risk increase) the dominating long-term protection occurs due to permanent structural changes, terminal differentiation and perhaps decreased cell proliferation and carcinogen-binding in combination. 相似文献
11.
Introduction: Biomarkers are commonly used to stratify cancer patients and guide targeted therapies, but most biomarkers are of a genomic nature. Discrepancies between the genome and proteome and the high rates of drug resistance indicate that proteomic analyses may provide additional critically important information. Here we present immuno-Matrix-Assisted Laser Desorption/Ionization (iMALDI), the combination of immuno-affinity enrichment of peptides followed by direct MALDI-mass spectrometry analysis. iMALDI is a highly sensitive, targeted protein-quantitation technique with the potential to measure clinically relevant signaling-pathway proteins using minimal sample amounts, thus improving upon existing methodologies. Areas covered: We provide a brief overview of the current state of biomarker analysis technologies for modern cancer treatment. We also show the advantages of iMALDI for translating potential new biomarkers into the clinic, factors to consider for iMALDI assay development, and the utility of iMALDI for the quantitation of cell-signaling proteins. Expert commentary: We see targeted mass spectrometry approaches such as iMALDI as an important part of improving patient responses to targeted therapies by providing highly sensitive, accurate, precise, and specific measurements of signaling-pathway proteins, both in tumor cells and in cells from the tumor microenvironment. iMALDI results can be integrated with other -omics data to aid in tumor-targeting therapies and immuno-oncology. 相似文献
12.
Estrogen signaling is mediated by ERα and ERβ in hormone dependent, breast cancer (BC). Over the last decade the implication of epigenetic pathways in BC tumorigenesis has emerged: cancer-related epigenetic modifications are implicated in both gene expression regulation, and chromosomal instability. In this review, the epigenetic-mediated estrogen signaling, controlling both ER level and ER-targeted gene expression in BC, are discussed: (1) ER silencing is frequently observed in BC and is often associated with epigenetic regulations while chemical epigenetic modulators restore ER expression and increase response to treatment;(2) ER-targeted gene expression is tightly regulated by co-recruitment of ER and both coactivators/corepressors including HATs, HDACs, HMTs, Dnmts and Polycomb proteins. 相似文献
13.
Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥ 15, and mutated in ≥ 10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The ‘organismal systems’ pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥ 7 cancers yielded insights into processes affected. 相似文献
14.
AbstractIn this study, novel thiosemicarbazides and 1,3,4-oxadiazoles were synthesized and evaluated for their anticancer effects on human MCF-7 breast cancer cell lines. Among the synthesized derivatives studied, compound 2-(3-(4-chlorophenyl)-3-hydroxybutanoyl)-N-phenylhydrazinecarbothioamide 4c showed the highest cytotoxicity against MCF-7 breast cancer cells as it reduced cell viability to approximately 15% compared to approximately 25% in normal breast epithelial cells. Therefore, we focused on 4c for further investigations. Our data showed that 4c induced apoptosis in MCF-7 cells which was further confirmed by TUNEL assay. Western blotting analysis showed that compound 4c up-regulated the pro-survival proteins Bax, Bad and ERK1/2, while it down-regulated anti-apoptotic proteins Bcl-2, Akt and STAT-3. Additionally, 4c induced phosphorylation of SAPK/JNK in MCF-7 cells. Pretreatment of MCF-7 cells with 10?µM of JNK inhibitor significantly reduced 4c-induced apoptosis. Molecular docking results suggested that compound 4c showed a binding pattern close to the pattern observed in the structure of the lead fragment bound to JNK1. Collectively, the data of current study suggested that the thiosemicarbazide 4c might trigger apoptosis in human MCF-7 cells by targeting JNK signaling. 相似文献
15.
Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis ( P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer. 相似文献
16.
Fas/Fas ligand (Fas L) death pathway is an important mediator of apoptosis. Deregulation of Fas pathway is reported to be involved in the immune escape of breast cancer and the resistance to anti-cancer drugs. In this study, we demonstrated that conditioned medium by normal breast epithelial cells (NBEC-CM) induced apoptosis of MCF-7 and T-47D Fas-sensitive cells but had no effect on MDA-MB-231 Fas-resistant cells. Inhibition of PI3 kinase or NF-kappaB by specific inhibitors or transient transfections restored the sensitivity of MDA-MB-231 cells to NBEC-induced apoptosis. Moreover, the constitutive activation of NF-kappaB was controlled by PI3 kinase because inhibition of PI3 kinase reduced NF-kappaB activity. Inducible activation of NF-kappaB rendered MCF-7 cells resistant to NBEC-CM- and Fas agonist antibody-triggered apoptosis. Therefore, constitutive or inducible activation of PI3 kinase and/or NF-kappaB in breast cancer cells rendered them resistant to NBEC-triggered apoptosis. In addition, Fas neutralizing antibody and dominant negative Fas abolished NBEC-triggered apoptosis. Western blot and confocal microscopy analysis showed an increase of membrane Fas/Fas L when cells were induced into apoptotis by NBEC-CM. Taken together, these data show that NBEC induced apoptosis in breast cancer cells via Fas signaling. 相似文献
17.
Novel membrane progestin receptors (mPRs) coupled to G proteins recently identified in several species, including humans, are potential intermediaries in rapid, nongenomic progestin actions observed in a wide variety of tissues. Here we demonstrate mPR mRNA and protein expression and specific membrane-associated progestin binding in MCF-7 and SK-BR-3 human breast cancer cells. Interestingly, human mPRalpha mRNA expression was higher in breast tumor biopsies than in normal tissue from the same breast. Recent studies indicate intracellular signaling pathways initiated by the mPRs are broadly similar to those induced during breast cancer growth and development. Taken together these results suggest a potential involvement of mPRs during the development or progression of breast cancer. 相似文献
18.
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy. 相似文献
19.
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer. 相似文献
20.
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations. The non-coding displacement (D)-loop, especially a mononucleotide repeat (poly-C) between 303 and 315 nucleotides (D310), has been recently identified as a frequent hotspot of mutations in human neoplasia, including breast cancer. To further explore the sequence variations of mitochondrial D-loop region in familial breast cancer and their possible associations with breast cancer risk, PCR-SSCP and direct DNA sequencing methods were used to detect the variants of the mtDNA D-Loop in 23 familial breast cancer patients as well as three high-risk cancer families. Compared to that in sporadic breast tumors (53.3%, 16/30) and healthy blood donors (6.7%, 2/30), we identified a total of 126 sequence alterations in 23/23 (100%) of familial breast cancer patients, including eight novel nucleotide variants. Among these changes, A to G at nt.263, T to C at nt.489, T to C at nt.310, TC insertion at nt.311, CA deletion at nt.522, and C to G at nt.527 were highly frequent ones. In addition, among three high-risk cancer families, we found that individuals affected with breast cancer harbored more mtDNA sequence variants in mtDNA D310 area than other affected family members. Together, our data indicate that sequence variants within the mtDNA D-Loop region are frequent events in Chinese familial breast cancer patients. Some of these nucleotide abnormalities, particularly those in D310 segment, might be involved in the breast carcinogenesis and could be included in a panel of molecular biomarkers for cancer susceptibility early-detection strategy. 相似文献
|