首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bak and Bax are critical apoptotic mediators that naturally localize to both mitochondria and the endoplasmic reticulum (ER). Although it is generally accepted that mitochondrial expression of Bak or Bax suffices for apoptosis initiated by BH3‐only homologues, it is currently unclear whether their reticular counterparts may have a similar potential. In this study, we show that cells exclusively expressing Bak in endoplasmic membranes undergo cytochrome c mobilization and mitochondrial apoptosis in response to BimEL and Puma, even when these BH3‐only molecules are also targeted to the ER. Surprisingly, calcium was necessary but not sufficient to drive the pathway, despite normal ER calcium levels. We provide evidence that calcium functions coordinately with the ER‐stress surveillance machinery IRE1α/TRAF2 to transmit apoptotic signals from the reticulum to mitochondria. These results indicate that BH3‐only mediators can rely on reticular Bak to activate an ER‐to‐mitochondria signalling route able to induce cytochrome c release and apoptosis independently of the canonical Bak,Bax‐dependent mitochondrial gateway, thus revealing a new layer of complexity in apoptotic regulation.  相似文献   

2.
The Bcl‐2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro‐apoptotic proteins. Yet the mechanistic details of the Bax‐induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring‐like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super‐resolution data provide direct evidence in support of large Bax‐delineated pores in the mitochondrial outer membrane as being crucial for Bax‐mediated MOMP in cells.  相似文献   

3.
Bcl-2 family proteins regulate apoptosis, in part, by controlling formation of the mitochondrial apoptosis-induced channel (MAC), which is a putative cytochrome c release channel induced early in the intrinsic apoptotic pathway. This channel activity was never observed in Bcl-2-overexpressing cells. Furthermore, MAC appears when Bax translocates to mitochondria and cytochrome c is released in cells dying by intrinsic apoptosis. Bax is a component of MAC of staurosporine-treated HeLa cells because MAC activity is immunodepleted by Bax antibodies. MAC is preferentially associated with oligomeric, not monomeric, Bax. The single channel behavior of recombinant oligomeric Bax and MAC is similar. Both channel activities are modified by cytochrome c, consistent with entrance of this protein into the pore. The mean conductance of patches of mitochondria isolated after green fluorescent protein-Bax translocation is significantly higher than those from untreated cells, consistent with onset of MAC activity. In contrast, the mean conductance of patches of mitochondria indicates MAC activity is present in apoptotic cells deficient in Bax but absent in apoptotic cells deficient in both Bax and Bak. These findings indicate Bax is a component of MAC in staurosporine-treated HeLa cells and suggest Bax and Bak are functionally redundant as components of MAC.  相似文献   

4.
During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.  相似文献   

5.
In non-apoptotic cells, Bak constitutively resides in the mitochondrial outer membrane. In contrast, Bax is in a dynamic equilibrium between the cytosol and mitochondria, and is commonly predominant in the cytosol. In response to an apoptotic stimulus, Bax and Bak change conformation, leading to Bax accumulation at mitochondria and Bak/Bax oligomerization to form a pore in the mitochondrial outer membrane that is responsible for cell death. Using blue native-PAGE to investigate how Bax oligomerizes in the mitochondrial outer membrane, we observed that, like Bak, a proportion of Bax that constitutively resides at mitochondria associates with voltage-dependent anion channel (VDAC)2 prior to an apoptotic stimulus. During apoptosis, Bax dissociates from VDAC2 and homo-oligomerizes to form high molecular weight oligomers. In cells that lack VDAC2, constitutive mitochondrial localization of Bax and Bak was impaired, suggesting that VDAC2 has a role in Bax and Bak import to, or stability at, the mitochondrial outer membrane. However, following an apoptotic stimulus, Bak and Bax retained the ability to accumulate at VDAC2-deficient mitochondria and to mediate cell death. Silencing of Bak in VDAC2-deficient cells indicated that Bax required either VDAC2 or Bak in order to translocate to and oligomerize at the mitochondrial outer membrane to efficiently mediate apoptosis. In contrast, efficient Bak homo-oligomerization at the mitochondrial outer membrane and its pro-apoptotic function required neither VDAC2 nor Bax. Even a C-terminal mutant of Bax (S184L) that localizes to mitochondria did not constitutively target mitochondria deficient in VDAC2, but was recruited to mitochondria following an apoptotic stimulus dependent on Bak or upon over-expression of Bcl-xL. Together, our data suggest that Bax localizes to the mitochondrial outer membrane via alternate mechanisms, either constitutively via an interaction with VDAC2 or after activation via interaction with Bcl-2 family proteins.Bax and Bak are the key effectors of the intrinsic apoptotic pathway initiated in response to diverse stimuli including anoikis, DNA damage and growth factor withdrawal.1 Both proteins are normally dormant in healthy cells, but upon reception of an apoptotic stimulus, they undergo conformation change that allows their self-association to form pores in the mitochondrial outer membrane (MOM).2, 3, 4, 5, 6, 7 The consequence of disruption of the MOM is twofold; it impairs the ability of mitochondria to generate ATP by oxidative phosphorylation and it allows the release of intermembrane proteins including cytochrome c that agonizes caspases that dismantle the cell.Bak and Bax share significant structural homology in their inactive states and have conserved mechanism of conformation change and oligomerization.3, 8, 9, 10 Further, genetic studies reveal that Bak and Bax perform at least partially overlapping function, with deficiency in both necessary to perturb apoptosis during embryonic development and in response to toxic insult.1, 11 However, whether Bak and Bax are regulated similarly is unclear. Whereas Bak is constitutively anchored in the MOM via its hydrophobic C-terminal transmembrane domain, Bax is predominantly cytosolic in the majority of non-apoptotic cells.12 Recent evidence indicates that Bax is in a dynamic equilibrium between cytosol and mitochondria and is constantly trafficked away from the MOM in non-apoptotic cells.13, 14 In response to apoptotic stress this ‘retrotranslocation'' is disrupted causing Bax to accumulate at mitochondria; a hallmark of most apoptotic cells. The mechanism governing the dynamic distribution of Bax in healthy and apoptotic cells is unclear with interactions with pro-survival proteins debated.13, 14Voltage-dependent anion channels (VDACs) are the major channels responsible for ion passage across the MOM. Studies have also implicated an additional role for the VDACs in the regulation of Bak or Bax apoptotic function or potentially even constituting a component of the Bak/Bax apoptotic pore.15, 16, 17, 18 However, these studies have provided contrasting findings relating to whether VDACs might positively or negatively regulate Bak/Bax apoptotic function.We used blue native-PAGE (BN-PAGE) to investigate how Bax oligomerizes in the MOM during apoptosis. We observed that VDAC2 is a determinant of the constitutive association of both Bax and Bak with the MOM. The defect in Bax mitochondrial localization can be bypassed by Bak-dependent recruitment during apoptosis. Thus, our data suggest that mitochondrial localization of Bax occurs via distinct mechanisms in healthy and apoptotic cells and that either VDAC2 or Bak is required for the efficient translocation of Bax and hence for the oligomerization at the MOM and Bax apoptotic function.  相似文献   

6.
Bif-1, a member of the endophilin B protein family, interacts with Bax and promotes interleukin-3 withdrawal-induced Bax conformational change and apoptosis when overexpressed in FL5.12 cells. Here, we provide evidence that Bif-1 plays a regulatory role in apoptotic activation of not only Bax but also Bak and appears to be involved in suppression of tumorigenesis. Inhibition of endogenous Bif-1 expression in HeLa cells by RNA interference abrogated the conformational change of Bax and Bak, cytochrome c release, and caspase 3 activation induced by various intrinsic death signals. Similar results were obtained in Bif-1 knockout mouse embryonic fibroblasts. While Bif-1 did not directly interact with Bak, it heterodimerized with Bax on mitochondria in intact cells, and this interaction was enhanced by apoptosis induction and preceded the Bax conformational change. Moreover, suppression of Bif-1 expression was associated with an enhanced ability of HeLa cells to form colonies in soft agar and tumors in nude mice. Taken together, these findings support the notion that Bif-1 is an important component of the mitochondrial pathway for apoptosis as a novel Bax/Bak activator, and loss of this proapoptotic molecule may contribute to tumorigenesis.  相似文献   

7.
Anoxic and metabolic stresses in large‐scale cell culture during biopharmaceutical production can induce apoptosis. Strategies designed to ameliorate the problem of apoptosis in cell culture have focused on mRNA knockdown of pro‐apoptotic proteins and over‐expression of anti‐apoptotic ones. Apoptosis in cell culture involves mitochondrial permeabilization by the pro‐apoptotic Bak and Bax proteins; activity of either protein is sufficient to permit apoptosis. We demonstrate here the complete and permanent elimination of both the Bak and Bax proteins in combination in Chinese hamster ovary (CHO) cells using zinc‐finger nuclease‐mediated gene disruption. Zinc‐finger nuclease cleavage of BAX and BAK followed by inaccurate DNA repair resulted in knockout of both genes. Cells lacking Bax and Bak grow normally but fail to activate caspases in response to apoptotic stimuli. When grown using scale‐down systems under conditions that mimic growth in large‐scale bioreactors they are significantly more resistant to apoptosis induced by starvation, staurosporine, and sodium butyrate. When grown under starvation conditions, BAX‐ and BAK‐deleted cells produce two‐ to fivefold more IgG than wild‐type CHO cells. Under normal growth conditions in suspension culture in shake flasks, double‐knockout cultures achieve equal or higher cell densities than unmodified wild‐type cultures and reach viable cell densities relevant for large‐scale industrial protein production. Biotechnol. Bioeng. 2010; 105: 330–340. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Bax-dependent regulation of Bak by voltage-dependent anion channel 2   总被引:4,自引:0,他引:4  
Many studies have demonstrated a critical role of Bax in mediating apoptosis, but the role of Bak in regulating cancer cell apoptotic sensitivities in the presence or absence of Bax remains incompletely understood. Using isogenic cells with defined genetic deficiencies, here we show that in response to intrinsic, extrinsic, and endoplasmic reticulum stress stimuli, HCT116 cells show clear-cut apoptotic sensitivities in the order of Bax+/Bak+ > Bax+/Bak- > Bax-/Bak+ > Bax-/Bak-. Small interference RNA-mediated knockdown of Bak in Bax-deficient cells renders HCT116 cells completely resistant to apoptosis induction. Surprisingly, however, Bak knockdown in Bax-expressing cells only slightly affects the apoptotic sensitivities. Bak, like Bax, undergoes the N terminus exposure upon apoptotic stimulation in both Bax-expressing and Bax-deficient cells. Gel filtration, chemical cross-linking, and co-immunoprecipitation experiments reveal that different from Bax, which normally exists as monomers in unstimulated cells and is oligomerized by apoptotic stimulation, most Bak in unstimulated HCT116 cells exists in two distinct protein complexes, one of which contains voltage-dependent anion channel (VDAC) 2. During apoptosis, Bak and Bax form both homo- and hetero-oligomeric complexes that still retain some VDAC-2. However, the oligomeric VDAC-2 complexes are diminished, and Bak does not interact with VDAC-2 in Bax-deficient HCT116 cells. These results highlight VDAC-2 as a critical inhibitor of Bak-mediated apoptotic responses.  相似文献   

9.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

10.
Mitochondrial outer membrane permeabilization (MOMP) is a key checkpoint in apoptosis that activates the caspase cascade and irreversibly causes the majority of cells to die. The proteins of the Bcl-2 family are master regulators of apoptosis that form a complex interaction network within the mitochondrial membrane that determines the induction of MOMP. This culminates in the activation of the effector members Bax and Bak, which permeabilize the mitochondrial outer membrane to mediate MOMP. Although the key role of Bax and Bak has been established, many questions remain unresolved regarding molecular mechanisms that control the apoptotic pore. In this review, we discuss the recent progress in our understanding of the regulation of Bax/Bak activity within the mitochondrial membrane.  相似文献   

11.

Background

One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear.

Methodology/Principal Findings

To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1.

Conclusions/Significance

Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.  相似文献   

12.
During apoptosis the pro-death Bcl-2 family members Bax and Bak induce mitochondrial outer membrane permeabilization (MOMP) to mediate cell death. Recently, it was shown that Bax and Bak are also required for mitochondrial permeability transition pore (MPTP)-dependent necrosis, where, in their non-oligomeric state, they enhance permeability characteristics of the outer mitochondrial membrane. Necroptosis is another form of regulated necrosis involving the death receptors and receptor interacting protein kinases (RIP proteins, by Ripk genes). Here, we show cells or mice deficient for Bax/Bak or cyclophilin D, a protein that regulates MPTP opening, are resistant to cell death induced by necroptotic mediators. We show that Bax/Bak oligomerization is required for necroptotic cell death and that this oligomerization reinforces MPTP opening. Mechanistically, we observe mixed lineage kinase domain-like (MLKL) protein and cofilin-1 translocation to the mitochondria following necroptosis induction, while expression of the mitochondrial matrix isoform of the antiapoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), is significantly reduced. Some of these effects are lost with necroptosis inhibition in Bax/Bak1 double null, Ppif-/-, or Ripk3-/- fibroblasts. Hence, downstream mechanisms of cell death induced by necroptotic stimuli utilize both Bax/Bak to generate apoptotic pores in the outer mitochondrial membrane as well as MPTP opening in association with known mitochondrial death modifying proteins.  相似文献   

13.
In the present study a clonal Jurkat cell line deficient in expression of Bak was used to analyze the role of Bak in cytochrome c release from mitochondria. The Bak-deficient T leukemic cells were resistant to apoptosis induced by UV, staurosporin, VP-16, bleomycin, or cisplatin. In contrast to wild type Jurkat cells, these Bak-deficient cells did not respond to UV or treatment with these anticancer drugs by membranous phosphatidylserine exposure, DNA breaks, activation of caspases, or release of mitochondrial cytochrome c. The block in the apoptotic cascade was in the mitochondrial mechanism for cytochrome c release because purified mitochondria from Bak-deficient cells failed to release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. The resistance of Bak-deficient cells to VP-16 was reversed by transduction of the Bak gene into these cells. Also, the cytochrome c releasing capability of the Bak-deficient mitochondria was restored by insertion of recombinant Bak protein into purified mitochondria. Following mitochondrial localization, low dose recombinant Bak restored the mitochondrial release of cytochrome c in response to Bax; at increased doses it induced cytochrome c release itself. The function of Bak is independent of Bid and Bax because recombinant Bak induced cytochrome c release from mitochondria purified from Bax(-/-), Bid(-/-), or Bid(-/-) Bax(-/-) mice. Together, our findings suggest that Bak plays a key role in the apoptotic machinery of cytochrome c release and thus in the chemoresistance of human T leukemic cells.  相似文献   

14.
We have previously shown that inhibition of the proteolytic activity of the proteasome induces apoptosis and suppresses essential functions of activated human CD4+ T cells, and we report now the detailed mechanisms of apoptosis following proteasome inhibition in these cells. Here we show that proteasome inhibition by bortezomib activates the mitochondrial pathway of apoptosis in activated CD4+ T cells by disrupting the equilibrium of pro‐apoptotic and anti‐apoptotic proteins at the outer mitochondrial membrane (OMM) and by inducing the generation of reactive oxygen species (ROS). Proteasome inhibition leads to accumulation of pro‐apoptotic proteins PUMA, Noxa, Bim and p53 at the OMM. This event provokes mitochondrial translocation of activated Bax and Bak homodimers, which induce loss of mitochondrial membrane potential (ΔΨm). Breakdown of ΔΨm is followed by rapid release of pro‐apoptotic Smac/DIABLO and HtrA2 from mitochondria, whereas release of cytochrome c and AIF is delayed. Cytoplasmic Smac/DIABLO and HtrA2 antagonize IAP‐mediated inhibition of partially activated caspases, leading to premature activation of caspase‐3 followed by activation of caspase‐9. Our data show that proteasome inhibition triggers the mitochondrial pathway of apoptosis by activating mutually independent apoptotic pathways. These results provide novel insights into the mechanisms of apoptosis induced by proteasome inhibition in activated T cells and underscore the future use of proteasome inhibitors for immunosuppression. J. Cell. Biochem. 108: 935–946, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Tumor necrosis factor (TNF)-alpha-mediated death signaling induces oligomerization of proapoptotic Bcl-2 family member Bax into a high molecular mass protein complex in mitochondrial membranes. Bax complex formation is associated with the release of cytochrome c, which propagates death signaling by acting as a cofactor for caspase-9 activation. The adenovirus Bcl-2 homologue E1B 19K blocks TNF-alpha-mediated apoptosis by preventing cytochrome c release, caspase-9 activation, and apoptosis of virus-infected cells. TNF-alpha induces E1B 19K-Bax interaction and inhibits Bax oligomerization. Oligomerized Bax may form a pore to release mitochondrial proteins, analogous to the homologous pore-forming domains of bacterial toxins. E1B 19K can also bind to proapoptotic Bak, but the functional significance is not known. TNF-alpha signaling induced Bak-Bax interaction and both Bak and Bax oligomerization. E1B 19K was constitutively in a complex with Bak, and blocked the Bak-Bax interaction and oligomerization of both. The TNF-alpha-mediated cytochrome c and Smac/DIABLO release from mitochondria was inhibited by E1B 19K expression in adenovirus-infected cells. Since either Bax or Bak is essential for death signaling by TNF-alpha, the interaction between E1B 19K and both Bak and Bax may be required to inhibit their cooperative or independent oligomerization to release proteins from mitochondria which promote caspase activation and cell death.  相似文献   

17.
Mitochondrial dysfunction mediated by Bax and Bak is a critical step in mammalian cell apoptosis. However, the molecular mechanism of Bax activation remains unknown and has been difficult to investigate due to its rapid and stochastic nature. It is currently unclear whether mitochondria play a passive role in the initiation of apoptosis, remaining unaffected by cell stresses until Bax and Bak are active, or whether they actively participate in Bax/Bak activation. Here, two viral proteins, E1B19K and BHRF1, are examined for their ability to block Bax activation at different steps and thereby reveal the timing of mitochondrial changes during apoptosis. We demonstrate that BHRF1 strongly inhibits Bax activation but not upstream apoptotic signaling events, while E1B19K permits initial stages of Bax activation but prevents the subsequent oligomerization of Bax that is required for mitochondrial dysfunction. In this defined system we show that changes in mitochondrial ultrastructure, characteristic of cells undergoing apoptosis, precede Bax activation and are not blocked by E1B19K and BHRF1. We suggest that the ability of mitochondria to respond to apoptotic stress prior to Bax activation indicates that these organelles may play a direct role in activating Bax.  相似文献   

18.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

19.
Cell death due to apoptosis is frequently observed in large‐scale manufacturing of therapeutic proteins, and can reduce product accumulation in bioreactors. Several different strategies that involve overexpression of antiapoptotic or downregulation of proapoptotic proteins have been designed in attempt to curb this problem in Chinese hamster ovary (CHO) cell culture. However, each of these designs has their own shortcomings and limits, rendering them ineffective for large‐scale protein production. Recently, we have reported generation of a Bax and Bak deficient dhfr?/? CHO cell line using zinc‐finger nucleases. Here we demonstrate that puromycin, but not methotrexate, selection can be used to generate antibody‐expressing Bax and Bak deficient clones that are not only resistant to apoptosis, but that can also achieve higher titers relative to parental CHO cells due to higher cell density. Additionally, we show that Bax and Bak deficient cells have more mitochondria with healthy membrane potential, an attribute that perhaps contributes to their more potent growth compared to parental cells. Bax and Bak deficient cells do not readily apoptose, as shown by the ability to withstand high concentrations of apoptosis inducing agents, such as sodium butyrate, without a reduction in viability, growth, or titer. These traits render Bax and Bak deficient cells a potentially attractive host for production of therapeutic proteins at industrial scale. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:727–737, 2013  相似文献   

20.
Pseudomonas aeruginosa use N‐(3‐oxododecanoyl)‐homoserine lactone (C12) as a quorum‐sensing molecule to regulate gene expression in the bacteria. It is expected that in patients with chronic infections with P. aeruginosa, especially as biofilms, local [C12] will be high and, since C12 is lipid soluble, diffuse from the airways into the epithelium and underlying fibroblasts, capillary endothelia and white blood cells. Previous work showed that C12 has multiple effects in human host cells, including activation of apoptosis. The present work tested the involvement of Bak and Bax in C12‐triggered apoptosis in mouse embryo fibroblasts (MEF) by comparing MEF isolated from embryos of wild‐type (WT) and Bax?/?/Bak?/? (DKO) mice. In WT MEF C12 rapidly triggered (minutes to 2 h): activation of caspases 3/7 and 8, depolarization of mitochondrial membrane potential (Δψmito), release of cytochrome C from mitochondria into the cytosol, blebbing of plasma membranes, shrinkage/condensation of cells and nuclei and, subsequently, cell killing. A DKO MEF line that was relatively unaffected by the Bak/Bax‐dependent proapoptotic stimulants staurosporine and etoposide responded to C12 similarly to WT MEF: activation of caspase 3/7, depolarization of Δψmito and release of cytochrome C and cell death. Re‐expression of Bax or Bak in DKO MEF did not alter the WT‐like responses to C12 in DKO MEF. These data showed that C12 triggers novel, rapid proapoptotic Bak/Bax‐independent responses that include events commonly associated with activation of both the intrinsic pathway (depolarization of Δψmito and release of cytochrome C from mitochondria into the cytosol) and the extrinsic pathway (activation of caspase 8). Unlike the proapoptotic agonists staurosporine and etoposide that release cytochrome C from mitochondria, C12's effects do not require participation of either Bak or Bax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号