首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells.  相似文献   

3.
Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.  相似文献   

4.
Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. Their apical surface is constituted by hundreds of motile cilia, which beat in a coordinated manner to generate directional fluid flow. We recently reported the identification of microRNAs of the miR-449 family as evolutionary conserved key regulators of vertebrate multiciliogenesis. This novel function of miR-449 was established using in vivo and in vitro antisense approaches in two distinct experimental models. miR-449 strongly accumulated in multiciliated cells in human airway epithelium and Xenopus laevis embryonic epidermis, where it triggered centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. Our data complement previous reports that showed the blocking action of miR-449 on the cell cycle, and unraveled a novel conserved mechanism whereby Notch signaling must undergo microRNA-mediated inhibition to permit differentiation of ciliated cell progenitors. We review here several important questions regarding the links between microRNAs and the Notch pathway in the control of cell fate.  相似文献   

5.
6.
7.
8.
The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1‐deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.  相似文献   

9.
Motile cilia of epithelial multiciliated cells transport vital fluids along organ lumens to promote essential respiratory, reproductive and brain functions. Progenitors of multiciliated cells undergo massive and coordinated organelle remodelling during their differentiation for subsequent motile ciliogenesis. Defects in multiciliated cell differentiation lead to severe cilia‐related diseases by perturbing cilia‐based flows. Recent work designated the machinery of mitosis as the orchestrator of the orderly progression of differentiation associated with multiple motile cilia formation. By examining the events leading to motile ciliogenesis with a methodological prism of mitosis, we contextualise and discuss the recent findings to broaden the spectrum of questions related to the differentiation of mammalian multiciliated cells.  相似文献   

10.
The primary cilium is considered as a key component of morphological cellular stability. However, cancer cells are notorious for lacking primary cilia in most cases, depending upon the tumour type. Previous reports have shown the effect of starvation and cytostatics on ciliogenesis in normal and cancer cells although with limited success, especially when concerning the latter. In this study, we evaluated the presence and frequency of primary cilia in breast fibroblasts and in triple‐negative breast cancer cells after treatment with cytostatics finding that, in the case of breast fibroblasts, primary cilia were detected at their highest incidence 72 hours after treatment with 120 nM doxorubicin. Further, multiciliated cells were also detected after treatment with 80 nM doxorubicin. On the other hand, treatment with taxol increased the number of ciliated cells only at low concentrations (1.25 and 3.25 nM) and did not induce multiciliation. Interestingly, triple‐negative breast cancer cells did not present primary cilia after treatment with either doxorubicin or taxol. This is the first study reporting the presence of multiple primary cilia in breast fibroblasts induced by doxorubicin. However, the null effect of these cytostatics on primary cilia incidence in the evaluated triple negative breast carcinomas cell lines requires further research.  相似文献   

11.
Mucociliary epithelia are essential for homeostasis of many organs and consist of mucus-secreting goblet cells and ciliated cells. Here, we present the ciliated epidermis of Xenopus embryos as a facile model system for in vivo molecular studies of mucociliary epithelial development. Using an in situ hybridization-based approach, we identified numerous genes expressed differentially in mucus-secreting cells or in ciliated cells. Focusing on genes expressed in ciliated cells, we have identified new candidate ciliogenesis factors, including several not present in the current ciliome. We find that TTC25-GFP is localized to the base of cilia and to ciliary axonemes, and disruption of TTC25 function disrupts ciliogenesis. Mig12-GFP localizes very strongly to the base of cilia and confocal imaging of this construct allows for simple visualization of the planar polarity of basal bodies that underlies polarized ciliary beating. Knockdown of Mig12 disrupts ciliogenesis. Finally, we show that ciliogenesis factors identified in the Xenopus epidermis are required in the midline to facilitate neural tube closure. These results provide further evidence of a requirement for cilia in neural tube morphogenesis and suggest that genes identified in the Xenopus epidermis play broad roles in ciliogenesis. The suites of genes identified here will provide a foundation for future studies, and may also contribute to our understanding of pathological changes in mucociliary epithelia that accompany diseases such as asthma.  相似文献   

12.
The luminal airway surface is lined with epithelial cells that provide a protective barrier from the external environment and clear inhaled pathogens from the lung. To accomplish this important function, human bronchial epithelial (HBE) cells must be able to rapidly regenerate a mucociliary layer of cells following epithelial injury. Whereas epithelial-fibroblast interactions are known to modulate the airway architecture during lung development and repair, little is known about how these two cells interact. Using a primary HBE and lung fibroblast coculture system, we demonstrate that 1) subepithelial fibroblasts provide a suitable environment for differentiation of HBE cells into a polarized ciliated phenotype despite being cultured in media that induces terminal squamous differentiation and growth arrest in the absence of fibroblasts, 2) HBE cells cocultured with subepithelial fibroblasts exhibit augmented ciliogenesis, accelerated wound repair, and diminished polarized ion transport compared with cells grown in control conditions, and 3) hepatocyte growth factor (HGF) is important for subepithelial fibroblast modulation of HBE cell differentiation. These results provide a model to study fibroblast modulation of epithelial phenotype and indicate that HGF secreted by subepithelial fibroblasts contributes to HBE cell differentiation.  相似文献   

13.
14.
Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.  相似文献   

15.
Little is known about ciliogenesis as it proceeds through the entire airway tree, from the trachea to the terminal bronchioles, especially during the postnatal period. The purpose of this study was to define the spatial and temporal (prenatal and postnatal) pattern of normal cilia development in the mouse. Three airway generations representing the entire airway tree were examined: trachea, lobar bronchi, and terminal bronchiole. Ciliated cells in lung lobe whole mounts were labeled with a fluorescent dye for confocal microscopy, and ciliated cell surface density was measured for each airway generation and age. The same samples were examined by scanning electron microscopy to verify the appearance of ciliated cells among the differentiating epithelium of the airways. Ciliated cells were first detected in the trachea and lobar bronchi at 16 days gestational age (DGA) and in the terminal bronchioles at 18 DGA. Ciliated cell surface density increased with prenatal and postnatal age at all airway levels. However, the ciliated cell surface density of the trachea and lobar bronchi was always greater compared with the terminal bronchiole. In conclusion, the study revealed that in developing tracheobronchial airways of the mouse: 1) Ciliogenesis differs temporally and spatially by airway generation; 2) Ciliated cell surface density increases with age in all airway generations, but density decreases in a proximal to distal direction; and 3) A significant portion of ciliogenesis continues after birth. This study provides a healthy basis for investigations of neonatal pulmonary disease or pollutant toxicity affecting cilia and its functions.  相似文献   

16.
17.
R E Gordon  B P Lane 《Tissue & cell》1984,16(3):337-343
During the regeneration of the mucociliary lining of the respiratory airways, many cells differentiate into ciliated cells. Early stages of ciliogenesis in these cells is characterized morphologically by appearance of MTOC, filosomes and centrioles throughout the apical cytoplasm. Tracheas removed during the period of ciliated cell differentiation which occurs 50-60 hr after minor mechanical injury were paraformaldehyde fixed and specific affinity sites for antitropomyosin and antimyosin antibodies were demonstrated by an indirect immunoperoxidase technique. The epithelium, after development of the osmiophilic reaction product, was embedded in epoxy and observed unstained with an electron microscope. Both antibodies had similar and specific binding sites in filosomes, MTOCs, microfilaments and on the microtubule triplets and foot processes of centrioles. Such localization suggests that these mechanochemical proteins may in addition to microfilament stabilization and contraction serve a specialized function in ciliogenesis.  相似文献   

18.
Summary We are studying the regulation of ciliated cell differentiation using an in vitro model of tracheal regeneration. Previously, we reported that removal of growth stimulating compounds such as epidermal growth factor (EGF) and cholera toxin reduced DNA synthesis and cell number while increasing ciliated cell differentiation (Clark et al., 1995). This result suggested that the induction of growth arrest may stimulate terminal differentiation of airway epithelial cells into ciliated cells. Transforming growth factor βs (TGFβs) inhibit epithelial cell proliferation and have also been shown to stimulate epithelial cell differentiation. In this study, the effect of TGFβ1 on growth and ciliated cell differentiation of rat tracheal epithelial (RTE) cells was examined. TGFβ1 inhibited [3H]thymidine incorporation by RTE cells in a dose-dependent manner. A 40% inhibition was observed after a 24-h incubation with 10 pM TGFβ1. Continuous treatment with TGFβ1 (1–50 pM) also reduced cell number during the time when ciliogenesis occurs. This reduction resulted in part from a loss of cells through exfoliation, in addition to the inhibition of proliferation. The exfoliated cells exhibited several morphological features characteristic of apoptosis, including shrunken cells, condensed and fragmented nuclei, and intact organelles. In addition, electrophoretic analysis of genomic DNA analysis isolated from exfoliated cells demonstrated the presence of a nucleosomal ladder. However, in contrast to the removal of EGF, treatment with TGFβ1 for 7 d did not increase ciliated cell differentiation. TGFβ1 is, therefore, capable of inhibiting proliferation and increasing apoptosis in RTE cells without stimulating ciliated cell differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号