首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.  相似文献   

2.
Comment on: Shchebet A, et al. Cell Cycle 2012; 2122-7  相似文献   

3.
Comment on: Shchebet A, et al. Cell Cycle 2012; 2122-7  相似文献   

4.
Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double‐strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA‐TELANGIECTASIA MUTATED–SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co‐localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.  相似文献   

5.
Comment on: Ciznadija D, et al. Cell Cycle 2011; 10:2714-23.  相似文献   

6.
7.
8.
miRNA response to DNA damage   总被引:1,自引:0,他引:1  
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.  相似文献   

9.
DNA damage has been shown to regulate DNA replication both by inhibition of origin utilization, and by slowing of replication progression. We have recently reported another mechanism by which DNA damage affects replication, in which the presence of damaged DNA inhibits, in trans, the initiation of chromosomal replication. This inhibition occurs by blocking the association of the processivity clamp PCNA with undamaged chromatin. This inhibitory activity is not due to sequestration of replication factors by the damaged DNA, rather, it acts through generation of a diffusible inhibitor of PCNA loading. The activation of this pathway is independent of canonical checkpoint signaling, and, in fact, results in activation of the checkpoint. This novel pathway may therefore represent an amplification step to stop cell cycle progression in response to lower levels of DNA damage.  相似文献   

10.
The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.  相似文献   

11.
Histone modifications in response to DNA damage   总被引:1,自引:0,他引:1  
  相似文献   

12.
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

13.
Human cells are prone to a range of natural environmental stresses and administered agents that damage or modify DNA, resulting in a cellular response typified by either cell death, or a cell cycle arrest, to permit repair of the genomic damage. DNA damage often elicits movement of proteins from one subcellular location to another, and the redistribution of proteins involved in genomic maintenance into distinct nuclear DNA repair foci is well documented. In this review, we discuss the DNA damage-induced trafficking of proteins to and from other distinct subcellular organelles including the nucleolus, mitochondria, Golgi complex and centrosome. The extent of intracellular transport suggests a dynamic and possibly co-ordinated role for protein trafficking in the DNA damage response.  相似文献   

14.
The kinases ATM and ATR are central to proper function of the DNA damage response. These kinases phosphorylate proteins to coordinate cell cycle progression and DNA damage repair/bypass. We have recently reported a large-scale identification of ATM/ATR substrates phosphorylated in response to UV damage of DNA. Overall 231 sites of phosphorylation were induced by UV damage of DNA or dependent on proper function of ATR. The study expanded the number of phosphorylation sites from protein classes known to be involved in the DNA damage response. Further, many sites were identified from protein types not thought to have a role in damage signaling. This observation suggests that the DNA damage response affects a much wider range of cellular processes than was previously appreciated. This study has also extended the successful use of the PhosphoScan® proteomic method from phospho-tyrosine to serine/threonine motifs, providing a general blueprint to use the method to study signaling pathways underlying a wide range of diseases.  相似文献   

15.
Comment on: Abdallah P, et al. Nat Cell Biol 2009; 11:988-93.  相似文献   

16.
Lee KM  O'Connell MJ 《DNA Repair》2006,5(1):138-141
SUMO is a small ubiquitin-like protein that is attached to target proteins, altering their localization and function. The condensin and cohesin-related Smc5/6 complex has been linked to DNA repair and checkpoint responses, but details of its molecular function have remained obscure. Recent reports show one subunit of the complex is a SUMO ligase, providing another link between protein sumoylation and DNA damage responses.  相似文献   

17.
RB-dependent S-phase response to DNA damage   总被引:7,自引:0,他引:7       下载免费PDF全文
The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G(1)/S transition. RB plays an essential role in the G(1) arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb(+/+) but not in Rb(-/-) mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21(Cip1)-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G(1) and in S phase.  相似文献   

18.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号