首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA损伤检验点调控的分子机制   总被引:1,自引:0,他引:1  
Guo YH  Zhu YB 《生理科学进展》2007,38(3):208-212
多种因素可以引起DNA损伤而最终导致基因产生错义突变、缺失或错误重组。为确保遗传准确性,细胞形成了复杂的细胞周期监督机制,即细胞周期检验点。其中DNA损伤检验点由许多检验点相关蛋白组成,可以识别损伤的DNA,经复杂的信号转导途径引发蛋白激酶的级联反应,减慢或阻滞细胞周期进程,从而为细胞修复损伤的DNA赢得时间。  相似文献   

2.
Maintenance of genomic stability is of crucial importance for all living organisms. It is no surprise that during evolution, a series of highly selective and efficient systems to detect DNA damage and control its repair have evolved. To this end, signal transduction pathways are involved in pausing the cell division cycle to provide time for repair, and ultimately releasing the cell cycle from arrest. Genetic components of the damage and replication checkpoints have been identified and a working model is beginning to emerge. This area of biological inquiry has received a great deal of attention in the past decade with the realization that the underlying regulatory mechanisms controlling the cell cycle are conserved throughout eukaryotic evolution. Many of the key players in this response have structural and functional counterparts in species as diverse as yeast and human. In recent years attention has also been paid to the plant kingdom suggesting that checkpoint controls have been highly conserved during evolution. The unicellular green alga Chlamydomonas reinhardtii is a suitable model organism for the study of basic cellular processes including cell cycle regulation and DNA repair. To investigate how algal cells accomplish these tasks, we have isolated mutants in the recognition and repair of DNA damage or in the response to DNA damage. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

3.
The circadian clock drives endogenous oscillations of cellular and physiological processes with a periodicity of approximately 24 h. Progression of the cell division cycle (CDC) has been found to be coupled to the circadian clock, and it has been postulated that gating of the CDC by the circadian cycle may have evolved to protect DNA from the mutagenic effects of ultraviolet light. When grown under nutrient-limiting conditions in a chemostat, prototrophic strains of budding yeast, Saccharomyces cerevisiae, adopt a robust metabolic cycle of ultradian dimensions that temporally compartmentalizes essential cellular events. The CDC is gated by this yeast metabolic cycle (YMC), with DNA replication strictly segregated away from the oxidative phase when cells are actively respiring. Mutants impaired in such gating allow DNA replication to take place during the respiratory phase of the YMC and have been found to suffer significantly elevated rates of spontaneous mutation. Analogous to the circadian cycle, the YMC also employs the conserved DNA checkpoint kinase Rad53/Chk2 to facilitate coupling with the CDC. These studies highlight an evolutionarily conserved mechanism that seems to confine cell division to particular temporal windows to prevent DNA damage. We hypothesize that DNA damage itself might constitute a “zeitgeber”, or time giver, for both the circadian cycle and the metabolic cycle. We discuss these findings in the context of a unifying theme underlying the circadian and metabolic cycles, and explore the relevance of cell cycle gating to human diseases including cancer.  相似文献   

4.
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.  相似文献   

5.
Cells have evolved intricate and specialized responses to DNA damage, central to which are the DNA damage checkpoints that arrest cell cycle progression and facilitate the repair process. Activation of these damage checkpoints relies heavily on the activity of Ser/Thr kinases, such as Chk1 and Chk2 (Saccharomyces cerevisiae Rad53), which are themselves activated by phosphorylation. Only more recently have we begun to understand how cells disengage the checkpoints to reenter the cell cycle. Here, we review progress toward understanding the functions of phosphatases in checkpoint deactivation in S. cerevisiae, focusing on the non-redundant roles of the type 2A phosphatase Pph3 and the PP2C phosphatases Ptc2 and Ptc3 in the deactivation of Rad53. We discuss how these phosphatases may specifically recognize different phosphorylated forms of Rad53 and how each may independently regulate different facets of the checkpoint response. In conjunction with the independent dephosphorylation of other checkpoint proteins, such regulation may allow a more tailored response to DNA damage that is coordinated with the repair process, ultimately resulting in the resumption of growth.  相似文献   

6.
S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm?U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G? and G?, and that mcm?U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm?U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.  相似文献   

7.
8.
The predominant cell cycle change induced by X-rays and clastogens in peripheral blood mononuclear cells is the accumulation of cells in the G2 phase of the cell cycle. We show that this accumulation consists of cells that are either delayed or arrested within the G2 phase. Since both X-rays and DNA crosslinking chemicals are known to damage DNA, the G2 phase inhibition caused by these agents is thought to be one of the primary manifestations of (unrepaired) DNA damage. This interpretation is supported by two additional findings. (1) Older individuals have elevated baseline levels of mononuclear blood cells that are delayed and/or arrested in the G2 phase of the cell cycle. This coincides with the increased chromosomal breakage rates reported for older individuals. (2) Irrespective of their age, individuals with inherited genetic instability syndromes (such as Fanconi anemia and Bloom syndrome) exhibit elevated G2 phase cell fractions. We show that the method used to detect such induced or spontaneous cell cycle changes, viz. BrdU-Hoechst flow cytometry, is a rapid and highly sensitive technique for the assessment of genetic cell damage.Dedicated to Professor Ulrich Wolf on the occasion of his 60th birthday  相似文献   

9.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

10.
Eukaryotic cells have evolved DNA damage response mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. The Schizosaccharomyces pombe Rad9 gene was initially identified as encoding a cell cycle checkpoint protein. When the mammalian homologue of S. pombe Rad9 was inactivated, however, chromosomal instability was observed even in the absence of DNA damaging agents. Both an increase in chromosome end-to-end associations and telomere loss were observed in cells with inactivated mammalian Rad9. This telomere instability correlated with enhanced S- and G2-phase specific cell killing, delayed kinetics of γ-H2AX foci appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase specific DNA damage repair. Inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S- and G2-phase of the cell cycle. These newly defined functions of mammalian Rad9 are discussed in relation to telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.  相似文献   

11.
Summary. Objectives. Human gliomas have a catastrophic prognosis with a median survival in the range of one year even after therapeutic treatment. Relatively high resistance towards apoptotic stimuli is the characteristic feature of malignant gliomas. Since cell cycle control has been shown to be the key mechanism controlling both apoptosis and proliferation, this study focuses on DNA damage analysis and protein expression patterns of essential cell cycle regulators P53 and P21waf1/cip1 in glioma under clinically relevant therapeutic conditions. Material and methods. U87MG cell line, characterised by wild p53-phenotype relevant for the majority of primary malignant glioblastomas, was used. Glioma cells underwent either irradiation or temozolomide treatment alone, or combined radio/chemo treatment. DNA damage was analysed by the “Comet Assay”. Expression rates of target proteins were analysed using “Western-Blot” technique. Results and conclusions. “Comet Assay” demonstrated extensive DNA damage caused by temozolomide treatment alone and in combination with irradiation, correlating well with the low survival rate observed under these treatment conditions. In contrast, irradiation alone resulted in a relatively low DNA damage, correlating well with a high survival rate and indicating a poor therapeutic efficiency of irradiation alone. Unusually low up-regulation of P53 and P21waf1/cip1 expression patterns was produced by the hereby tested stressful conditions. A deficit in cell cycle control might be the clue to the high resistance of malignant glioma cells to established therapeutic approaches.  相似文献   

12.
The DNA replication licensing factor Cdt1 is degraded by the ubiquitin-proteasome pathway during S phase of the cell cycle, to ensure one round of DNA replication during each cell division and in response to DNA damage to halt DNA replication. Constitutive expression of Cdt1 causes DNA re-replication and is associated with the development of a subset of human non-small cell-lung carcinomas. In mammalian cells, DNA damage-induced Cdt1 degradation is catalyzed by the Cul4-Ddb1-Roc1 E3 ubiquitin ligase. We report here that overexpression of the proliferating cell nuclear antigen (PCNA) inhibitory domain from the CDK inhibitors p21 and p57, but not the CDK-cyclin inhibitory domain, blocked Cdt1 degradation in cultured mammalian cells after UV irradiation. In vivo soluble Cdt1 and PCNA co-elute by gel filtration and associate with each other physically. Silencing PCNA in cultured mammalian cells or repression of pcn1 expression in fission yeast blocked Cdt1 degradation in response to DNA damage. Unexpectedly, deletion of Ddb1 in fission yeast cells also accumulated Cdt1 in the absence of DNA damage. We suggest that the Cul4-Ddb1 ligase evolved to ubiquitinate Cdt1 during normal cell growth as well as in response to DNA damage and a separate E3 ligase, possibly SCF(Skp2), evolved to either share or take over the function of Cdt1 ubiquitination during normal cell growth and that PCNA is involved in mediating Cdt1 degradation by the Cul4-Ddb1 ligase in response to DNA damage.  相似文献   

13.
The genus Piper belongs to the Piperaceae family, and includes species of commercial and medicinal importance. Chemical studies on Piper species resulted in the isolation of several biologically active molecules, including alkaloid amides, such as piplartine. This molecule, isolated from Piper tuberculatum, has significant cytotoxic activity against tumor cell lines, and presents antifungal, anti-platelet aggregation, anxiolytic, and antidepressant effects. In order to understand the biological properties of piplartine, this study investigated the genotoxicity and the induction of apoptosis by piplartine in V79 cells and its mutagenic and recombinogenic potential in Saccharomyces cerevisiae. Piplartine induced dose-dependent cytotoxicity in S. cerevisiae cultures in either stationary—or exponential growth phase. In addition, piplartine was not mutagenic when cells were treated during exponential-growth phase and kept in buffer solution, but it increased the frequencies of point, frameshift, and forward mutations when cells were treated in medium during growth. Piplartine treatment induced DNA strand breaks in V79 cells, as detected by neutral and alkaline comet assay. In cell cycle analysis, piplartine induced G2/M cell cycle arrest, probably as a consequence of the DNA damage induced and repair. Moreover, piplartine treatment induced apoptosis in a dose-dependent manner, as observed by a decrease in mitochondrial membrane potential and an increase in internucleosomal DNA fragmentation. These data suggest that the DNA damage caused by piplartine induces G2/M cell cycle arrest, followed by apoptosis. Moreover, we suggest that cells surviving piplartine-induced DNA damage can accumulate mutations, since this alkaloid was mutagenic and recombinogenic in S. cerevisiae assays.  相似文献   

14.
DNA damage checkpoints delay mitotic cell‐cycle progression in response to DNA stress, stalling the cell cycle to allow time for repair. CDKB is a plant‐specific cyclin‐dependent kinase (CDK) that is required for the G2/M transition of the cell cycle. In Arabidopsis, DNA damage leads the degradation of CDKB2, and the subsequent G2 arrest gives cells time to repair damaged DNA. G2 arrest also triggers transition from the mitotic cycle to endoreduplication, leading to the presence of polyploid cells in many tissues. In contrast, in rice (Oryza sativa), polyploid cells are found only in the endosperm. It was unclear whether endoreduplication contributes to alleviating DNA damage in rice (Oryza sativa). Here, we show that DNA damage neither down‐regulates Orysa;CDKB2;1 nor induces endoreduplication in rice. Furthermore, we found increased levels of Orysa;CDKB2;1 protein upon DNA damage. These results suggest that CDKB2 functions differently in Arabidopsis and rice in response to DNA damage. Arabidopsis may adopt endoreduplication as a survival strategy under genotoxic stress conditions, but rice may enhance DNA repair capacity upon genotoxic stress. In addition, polyploid cells due to endomitosis were present in CDKB2;1 knockdown rice, suggesting an important role for Orysa;CDKB2;1 during mitosis.  相似文献   

15.
The molecular control of DNA damage-induced cell death   总被引:2,自引:0,他引:2  
Because of the singular importance of DNA for genetic inheritance, all organisms have evolved mechanisms to recognize and respond to DNA damage. In metazoans, cells can respond to DNA damage either by undergoing cell cycle arrest, to facilitate DNA repair, or by undergoing cell suicide. Cell death can either occur by activation of the apoptotic machinery or simply be a consequence of irreparable damage that prevents further cell division. In germ cells, mechanisms for limiting alterations to the genome are required for faithful propagation of the species whereas in somatic cells, responses to DNA damage prevent the accumulation of mutations that might lead to aberrant cell proliferation or behavior. Several of the genes that regulate cellular responses to DNA damage function as tumor suppressors. The clinical use of DNA damaging agents in the treatment of cancer can activate these tumor suppressors and exploits the cellular suicide and growth arrest mechanisms that they regulate. It appears that in some but not all types of tumors the propensity to undergo apoptosis is a critical determinant of their sensitivity to anti-cancer therapy. This review describes current understanding of the molecular control of DNA damage-induced apoptosis with particular attention to its role in tumor suppression and cancer therapy.  相似文献   

16.
The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.  相似文献   

17.
The pre-karyote (the host for alpha-proteobacteria) is not assumed to have had a fusion prohibiting cell surface, and thus unlike prokaryotes could have practiced sex. A single DNA damage checkpoint control might have been the only checkpoint pathway regulating the ancient pre-karyotic cell cycle from which the modern eukaryotic cell cycle evolved. This single checkpoint would allow the cell division only when all the pre-karyote genome was completely replicated without mistakes. If the restart of DNA replication was impossible after DNA damage, the last chance to survive for this in S-phase blocked pre-karyote would be the fusion with the partner. After the fusion, recombination, and subsequent completing the replication of both haploid sets, the single DNA damage checkpoint would allow two subsequent rounds of fission. The fusion might have represented both useful repair strategy, and a mechanism of horizontal transmission of the ancestors of mitochondria. The presence/absence of these symbionts might have been a primordial form of sexual determination.  相似文献   

18.
Dependency relationships within the cell cycle allow cells to arrest the cycle reversibly in response to agents or conditions that interfere with specific aspects of its normal progression. In addition, overlapping pathways exist which also arrest the cell cycle in response to DNA damage. Collectively, these control mechanisms have become known as checkpoints. Analysis of checkpoints is facilitated by the fact that dependency relationships within the cell cycle, such as the dependency of mitosis on the completion of DNA synthesis, and the DNA damage checkpoint can be separated genetically. In fission yeast, Schizosaccharomyces pombe, the dependency of mitosis on prior completion of DNA synthesis is mediated through tyrosine-15 phosphorylation of the ubiquitous mitotic regulator p34cdc2. In contrast, the arrest of mitosis caused by DNA damage acts through a separate mechanism that appears to be independent of tyrosine-15 phosphorylation. Despite these distinct interactions with the mitotic machinery, the majority of fission yeast mutants that are deficient in mitotic arrest after DNA damage are also unable to respond to inhibition of DNA synthesis. In this essay we survey the current knowledge concerning feedback controls and checkpoints within fission yeast and relate this to information derived from other systems.  相似文献   

19.
The coevolution of bacterial pathogens and their hosts has contributed to the development of very complex and sophisticated functional pathogen--host interfaces. Thus, well-adapted pathogens have evolved a variety of strategies to manipulate host cell functions precisely. For example, a group of unrelated Gram-negative pathogenic bacteria have evolved a toxin, known as cytolethal distending toxin (CDT), that has the ability to control cell cycle progression in eukaryotic cells. Recent studies have identified CdtB as the active subunit of the CDT holotoxin. Through its nuclease activity, CdtB causes limited DNA damage, thereby triggering the DNA-damage response that ultimately results in the observed arrest of the cell cycle. In addition, it has been established that CDT is a tripartite AB toxin in which CdtB is the active 'A' subunit and CdtA and CdtC constitute the heterodimeric 'B' subunit required for the delivery of CdtB into the target cell. The mechanism of action of CDT suggests that the infliction of limited damage could be a strategy used by pathogenic bacteria to modulate host cell functions.  相似文献   

20.
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3?/? cells. Notably, Ada3?/? cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G? or G? phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3?/? cells confirmed higher residual DNA damage in Ada3?/? cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号