首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An auxin autotrophic Arachis hypogea cell culture was sensitive to stress treatments leading to water loss whereas the growth of its auxin-supplemented counterpart was unaffected under similar conditions. Here we show that an hour of transient auxin treatment in the post stress period was sufficient for restoring the auxin autotrophic growth potential of the stress driven quiescent Arachis cells. Qualitative proteome analysis revealed protein turnover to have a role in mediating auxin-originated signals in these cells. In consonance, MG132 a cell permeable inhibitor of the ubiquitin mediated protein turnover completely inhibited the auxin dependent growth restoration of the stressed Arachis cells. Thus protein turnover is a necessary downstream event in exogenous auxin mediated stress tolerance in Arachis cells.  相似文献   

2.
Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy‐demanding growth‐related processes. Studies using genome‐wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.  相似文献   

3.
The eurypsychrophilic bacterium Planococcus halocryophilus is capable of growth down to ?15°C, making it ideal for studying adaptations to subzero growth. To increase our understanding of the mechanisms and pathways important for subzero growth, we performed proteomics on P. halocryophilus grown at 23°C, 23°C with 12% w/v NaCl and ?10°C with 12% w/v NaCl. Many proteins with increased abundances at ?10°C versus 23°C also increased at 23C‐salt versus 23°C, indicating a closely tied relationship between salt and cold stress adaptation. Processes which displayed the largest changes in protein abundance were peptidoglycan and fatty acid (FA) synthesis, translation processes, methylglyoxal metabolism, DNA repair and recombination, and protein and nucleotide turnover. We identified intriguing targets for further research at ?10°C, including PlsX and KASII (FA metabolism), DD‐transpeptidase and MurB (peptidoglycan synthesis), glyoxalase family proteins (reactive electrophile response) and ribosome modifying enzymes (translation turnover). PemK/MazF may have a crucial role in translational reprogramming under cold conditions. At ?10°C P. halocryophilus induces stress responses, uses resources efficiently, and carefully controls its growth and metabolism to maximize subzero survival. The present study identifies several mechanisms involved in subzero growth and enhances our understanding of cold adaptation.  相似文献   

4.
Ubiquitin is an omnipresent protein found in all eukaryotes so far analysed. It is involved in several important processes, including protein turnover, chromosome structure and stress response. Parsley (Petroselinum crispum) contains at least two active polyubiquitin (ubi4) genes encoding hexameric precursor proteins. The deduced amino acid sequences of the ubiquitin monomers are identical to one another and to ubiquitin sequences from several other plant species. Analysis of the promoter region of one ubi4 gene revealed putative regulatory elements. In parsley plants, the ubi4 mRNAs were the predominant ubiquitin mRNAs and were present at comparable levels in all plant organs tested. In cultured parsley cells, high levels of ubiquitin gene expression remained unaffected by heat shock, elicitor or light treatment.  相似文献   

5.
Acclimation to very low photon fluxes involves adjusting a suite of physiological characteristics that collectively elicit a physiological response. Facilitating such changes is pro‐tein turnover. Dunaliella tertiolecta (Butcher) and Phaeodactylum tricornutum (Bohlin) were grown in turbidostats at a range of photon fluxes between 2 and 300 µmol photons m?2 s?1. The kinetics of pulse‐chase labelling of the protein with 3H showed that (1) two protein pools were present, one of which turned‐over rapidly (hours), and a second which turned over more slowly (days); and (2) protein turnover rates were slower in P. tricornutum than in D. tertiolecta. Phaeodactylum tricornutum had a lower maintenance coefficient for protein turnover than D. tertiolecta, and correspondingly a smaller proportion of its respiratory demands (30%) were associated with protein turnover than in D. tertiolecta (36%). There appears to be a correlation between lower metabolic activity, requiring lower protein concentrations, and an associated decreased cost of maintenance processes in P. tricornutum compared to D. tertiolecta. Differences between protein turnover rates and maintenance metabolic costs may be one of the photo‐acclimation strategies that determine which photon niches microalgae can successfully exploit.  相似文献   

6.
ABSTRACT

In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.  相似文献   

7.
Intertidal zone organisms experience thermal stress during periods of low tide, and much work has shown that induction of heat shock proteins and ubiquitination occurs in response to this stress. However, less is known of other cellular pathways that are regulated following thermal stress in these organisms. Here, we used a functional genomics approach to identify genes that were up- and downregulated following heat stress in the intertidal porcelain crab, Petrolisthes cinctipes using custom cDNA microarrays made from 13,824 cloned P. cinctipes ESTs representing 6717 unique consensus sequences. Statistically significant differences in gene expression between heat stressed and control groups were determined with R/maanova. Genes upregulated following heat stress were involved with protein folding, protein degradation, protein synthesis and gluconeogenesis, suggesting that heat stress accelerated protein turnover. Genes downregulated following heat stress were involved with detoxification, oxygen transport, oxidative phosphorylation, and lipid metabolism, suggesting that the animals were avoiding the generation of reactive oxygen species. ESTs matching hypothetical proteins and ESTs that had no GenBank match were also found to have been both upregulated and downregulated following heat stress, suggesting that novel genes may be involved in the heat stress response.  相似文献   

8.
To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress, inhibitors and the technology to determine chlorophyll fluorescence were used to explore the protective effects of D1 protein turnover and the lutein cycle in the high temperature stress of the leaves of three ephemeral plants. The results showed that the maximum light conversion efficiency (Fv/Fm) of the ephemeral plant leaves decreased, and the initial fluorescence (Fo) increased under 35°C ± 1°C heat stress for 1–4 h or on sunny days in the summer. Both Fv/Fm and Fo could be recovered after 8 h of darkness or afternoon weakening of the external temperature. Streptomycin sulfate (SM) or dithiothreitol (DTT) accelerated the decrease of Fv/Fm and the photochemical quenching coefficient (qP) in the leaves of three ephemeral plants at high temperature, and the decrease was greater in the SM than in the DTT treatment. When the high temperature stress was prolonged, the Y(II) values of light energy distribution parameters of PSII decreased, and the Y(NPQ) and Y(NO) values increased gradually in all the treatment groups of the three ephemeral plants. The results showed that the leaves of the three ephemeral plants had their own highly advanced mechanisms to protect against photodamage, which inhibited the turnover of D1 protein and xanthophyll cycle. This can damage the PSII reaction center in the leaves of the three ephemeral plants under high temperature. The protective effect of D1 protein turnover on heat stress in Erodium oxyrrhynchum and Senecio subdentatus was greater than that of the lutein cycle, while the protective effect of lutein cycle was greater than that of D1 protein turnover in Heliotropium acutiflorum subjected to heat damage.  相似文献   

9.
10.
Growth, morphological variation, and liquid chromatography–photodiode array detection–mass spectrometric analysis of pigments have been studied in a diazotrophic cyanobacterium Anabaena cylindrica in response to NaCl stress. The chlorophyll and cellular protein contents increased initially in response to 50 mM NaCl. Further increment in NaCl concentration, however, resulted in a significant decrease in both chlorophyll and cellular protein. A. cylindrica cells subjected to NaCl stress also showed morphological variations by having alteration in their size and volume. A. cylindrica cells subjected to NaCl stress also exhibited altered plastoquinone and chlorophyll-a (chl a) levels in comparison to its NaCl-untreated counterpart. Furthermore, a relative increase in plastoquinone level and a subsequent decrease in chl a level were recorded in NaCl adapted cells of A. cylindrica in response to NaCl stress. These results suggest that owing to adaptation various morphological, physiological, and biochemical changes occur in the cyanobacterium A. cylindrica in response to NaCl stress.  相似文献   

11.
Biological function and cellular responses to environmental perturbations are regulated by a complex interplay of DNA, RNA, proteins and metabolites inside cells. To understand these central processes in living systems at the molecular level, we integrated experimentally determined abundance data for mRNA, proteins, as well as individual protein half‐lives from the genome‐reduced bacterium Mycoplasma pneumoniae. We provide a fine‐grained, quantitative analysis of basic intracellular processes under various external conditions. Proteome composition changes in response to cellular perturbations reveal specific stress response strategies. The regulation of gene expression is largely decoupled from protein dynamics and translation efficiency has a higher regulatory impact on protein abundance than protein turnover. Stochastic simulations using in vivo data show how low translation efficiency and long protein half‐lives effectively reduce biological noise in gene expression. Protein abundances are regulated in functional units, such as complexes or pathways, and reflect cellular lifestyles. Our study provides a detailed integrative analysis of average cellular protein abundances and the dynamic interplay of mRNA and proteins, the central biomolecules of a cell.  相似文献   

12.
Summary Relationships between basal and fed metabolic rates and whole-body protein turnover rates were examined in three species of wallabies, the red-necked pademelon (Thylogale thetis), parma wallaby (Macropus parma) and tammar wallaby (M. eugenii).There were no significant differences among wallaby species in basal metabolic rate (BMR) which was 30% below eutherian mammals. However, the fed metabolic rate of the tammar was lower than that of the other two species (P<0.05), as was the protein turnover rate (P<0.01) which is consistent with its lower voluntary feed intake and with its lower maintenance nitrogen requirement.Protein turnover rates in the wallabies were 23–47% lower than in eutherian mammals. Similarly, protein synthesis made a lower contribution to fed metabolic rates in the wallabies (7–8%) than in eutherians (17–25%).Thus, compared with several eutherian species, macropodid marsupials have low rates of both energy and protein metabolism, but within the macropodids there is not necessarily a close link between basal metabolic rate and whole-body protein turnover.Abbreviations BMR basal metabolic rate - DEE daily energy expenditure - EE energy expenditure - LSD least significant difference - RQ respiratory quotient  相似文献   

13.
Sequestration of protein aggregates in inclusion bodies and their subsequent degradation prevents proteostasis imbalance, cytotoxicity, and proteinopathies. The underlying molecular mechanisms controlling the turnover of protein aggregates are mostly uncharacterized. Herein, we show that a TRIM family protein, TRIM16, governs the process of stress‐induced biogenesis and degradation of protein aggregates. TRIM16 facilitates protein aggregate formation by positively regulating the p62‐NRF2 axis. We show that TRIM16 is an integral part of the p62‐KEAP1‐NRF2 complex and utilizes multiple mechanisms for stabilizing NRF2. Under oxidative and proteotoxic stress conditions, TRIM16 activates ubiquitin pathway genes and p62 via NRF2, leading to ubiquitination of misfolded proteins and formation of protein aggregates. We further show that TRIM16 acts as a scaffold protein and, by interacting with p62, ULK1, ATG16L1, and LC3B, facilitates autophagic degradation of protein aggregates. Thus, TRIM16 streamlines the process of stress‐induced aggregate clearance and protects cells against oxidative/proteotoxic stress‐induced toxicity in vitro and in vivo. Taken together, this work identifies a new mechanism of protein aggregate turnover, which could be relevant in protein aggregation‐associated diseases such as neurodegeneration.  相似文献   

14.
Summary Methylation of a membrane-associated protein with an apparent molecular mass of 40000 daltons has been observed in Bacillus subtilis. The methylation was nutrient dependent and occurred with a doubling time of 4 ± 1 min. In wild-type strains, the half-life of turnover of the methyl group(s) was 17 ± 6 min. Several isogenic strains of B. subtilis containing spo0 mutations (spo0A and spo0H) were found to be normal in glutamate-dependent methylation of the protein and turnover of the methyl group(s). In strains containing spo0B and spo0E mutations, the methyl group(s) were incorporated in response to glutamate addition but turnover was not at a normal rate. The half-life of methyl group turnover was extended to 45 ± 3 min in these strains. In a spo0K mutant and in spoILI and spoIIF mutants, the protein was not significantly methylated. The methylation of a 40000 dalton protein was also found to be dependent on phosphate. This methylation was observed in wild-type and spo0A and spo0H strains with a doubling time of 4 ± 1 min and a half-life of turnover of the methyl group(s) of 11 + 3 min. In strains containing spo0B, spo0E, and spo0F mutations, the phosphate-dependent incorporation of the methyl group(s) was normal (5 ± 1 min) but the turnover half-life was extended to 46 ± 8 min. It is not known whether the nitrogen-dependent and phosphate-dependent systems methylated the same protein. The spo0 mutants are defective in the initial stages of sporulation, and it has been proposed that the spo0 gene products may play a role in nutrient sensing. The discovery of defects in the methylation of the 40 kDa protein in some of these spo0 mutants supports the proposal that the protein methylation may be part of a nutrient sensing system for the control of growth and sporulation in Bacillus species.  相似文献   

15.
16.
类钙调蛋白(calmodulin-like protein, CML)是植物中一种重要的Ca~(2+)结合蛋白,在植物生长发育和胁迫响应过程中起着重要的作用。该研究通过生物信息学方法在马铃薯基因组中鉴定了StCML基因家族成员,并对它们的表达模式及胁迫响应进行了分析,为深入解析马铃薯StCML基因家族成员在生长发育和胁迫响应中的作用机制奠定理论基础。结果显示:(1)在马铃薯基因组中共鉴定到80个StCML基因,它们均具有EF-hand结构;根据系统进化树拓扑结构可分为5个亚家族,在1~5亚家族中分别含有18、12、14、12、和24个基因,大部分基因具有较为保守的基因结构和基序。(2)RNA-Seq数据分析发现,StCML基因主要在马铃薯的花、叶柄、芽、雄蕊、匍匐茎和块茎中有特异表达,并且主要对盐、热、干旱和赤霉素处理有响应。(3)qRT-PCR分析发现,在低温胁迫下StCML13、StCML21和StCML53表达上调;在高温胁迫下StCML11、StCML21和StCML39表达上调;盐胁迫下StCML21和StCML60表达上调;青枯菌处理下StCML53表达上调,StCML8、StCML 13、StCML 21和StCML 60表达下调。研究表明,StCML基因对多种胁迫均有响应。  相似文献   

17.
Constitutive patterns of protein synthesis and protein glycosylation are severely disrupted by acute heat stress. Stressed cells respond by preferential synthesis of specific proteins, e.g., the well-known family of heat shock proteins. We observed another response that rapidly occurs during heating periods as short as 10 min at 45°C. During that period, CHO cells began to glycosylate specific proteins, designated as "prompt" stress glycoproteins (P-SG), while constitutive protein glycosylation ceased. Labeling of P-SGs showed a dose response with time and with temperature and appeared regardless of the label used (D-[3H]mannose or D-[3H]-glucose). On SDS-PAGE, the major P-SG was characterized by Mr ≈ 67 kDa (P-SG67) and pI = 5.1. Other less prominent P-SGs appeared at Mr 160, 100, 64, 60, and 47 kDa; incorporated label showed little turnover during 24 h at 37°C. Prompt glycosylation was inhibited by tunicamycin, and label incorporated into P-SGs was sensitive to N -glycosidase F, but not to O-glycosidase. Analysis of enzymatically digested P-SG67 indicated that label had been incorporated into both high-mannose (Man9G1cNAc) and complex-type oligosaccharides. Brefeldin A did not eliminate P-SG67 labeling, but caused the further appearance of novel, Brefeldin-associated P-SGs. Labeling of P-SG67 oligosaccharides occurred without significant concomitant protein synthesis, suggesting that addition of labeled oligosaccharides largely occurred on mature, rather than nascent proteins. The functional significance of prompt glycosylation remains to be defined, but we propose that this novel phenomenon is an integral part of the cellular heat stress response.  相似文献   

18.
Rdr1是出芽酵母Saccharomyces cerevisiae的一个转录抑制因子,参与控制细胞的多重药物耐受性,并可能与细胞胁迫应答相关.利用PCR方法扩增RDR1基因片段,将其克隆至高拷贝表达载体pYES2/NTA上并诱导Rdr1蛋白在酵母细胞中过表达.为了揭示转录抑制因子Rdr1在胁迫应答中的作用,比较了RDR1过表达细胞、RDR1缺失突变体细胞和野生型细胞在过氧化氢处理、热胁迫和高盐处理条件下的生长状态,结果显示,RDR1过表达导致细胞对上述3种胁迫作用更敏感,而RDR1缺失则使细胞对这些胁迫作用的耐受性不受影响或有一定增强.为了揭示上述不同细胞在胁迫条件下生长状态的差异与细胞内抗氧化酶活性之间的关系,测定并比较了RDR1过表达细胞、RDR1缺失突变体细胞和野生型细胞中超氧化物岐化酶(superoxide dismutase SOD)、过氧化氢酶、葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase G6PDH)、谷胱甘肽还原酶(glutathione reductase GR)的活性.结果表明,RDR1缺失突变体细胞具高活性的SOD、过氧化氢酶、G6PDH和GR,而Rdr1过表达细胞中SOD、过氧化氢酶、G6PDH和GR的活性较低.RDR1对SOD和过氧化氢酶活性的影响要大于G6PDH和GR.细胞抗氧化酶活性的变化初步揭示,RDR1过表达细胞对胁迫的敏感和RDR1缺失突变体细胞对胁迫耐受性增加的原因.为转录抑制因子Rdr1在胁迫应答中的负调控作用及其机理提供了初步的遗传学和生物化学证据.  相似文献   

19.
It is now well established that the σS subunit of RNA polymerase is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-inducible genes in Escherichiacoli. In this review, more recent findings will be summarized that demonstrate that σS also acts as a global regulator for the osmotic control of gene expression, and actually does so in exponentially growing cells. Thus, many σS-dependent genes are induced during entry into stationary phase as well as in response to osmotic upshift. K+ glutamate, which accumulates in hyperosmotically stressed cells, seems to specifically stimulate the activity of σS-containing RNA polymerase at σS-dependent promoters. Moreover, osmotic upshift results in an elevated cellular σS level similar to that observed in stationary-phase cells. This increase is the result of a stimulation of rpoS translation as well as an inhibition of the turnover of σS, which in exponentially growing non-stressed cells is a highly unstable protein. Whereas the RNA-binding protein HF-I, previously known as a host factor for the replication of phage Qβ RNA, is essential for rpoS translation, the recently discovered response regulator RssB, and ClpXP protease, have been shown to be required for σS degradation. The finding that the histone-like protein H-NS is also involved in the control of rpoS translation and σS turnover, sheds new light on the function of this protein in osmoregulation. Finally, preliminary evidence suggests that additional stresses, such as heat shock and acid shock, also result in increased cellular σS levels in exponentially growing cells. Taken together, σS function is clearly not confined to stationary phase. Rather, σS may be regarded as a sigma factor associated with general stress conditions.  相似文献   

20.
The modification of nuclear, mitochondrial, and cytoplasmic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic and essential post-translational modification of metazoans. Numerous forms of cellular injury lead to elevated levels of O-GlcNAc in both in vivo and in vitro models, and elevation of O-GlcNAc levels before, or immediately after, the induction of cellular injury is protective in models of heat stress, oxidative stress, endoplasmic reticulum (ER) stress, hypoxia, ischemia reperfusion injury, and trauma hemorrhage. Together, these data suggest that O-GlcNAc is a regulator of the cellular stress response. However, the molecular mechanism(s) by which O-GlcNAc regulates protein function leading to enhanced cell survival have not been identified. In order to determine how O-GlcNAc modulates stress tolerance in these models we have used stable isotope labeling with amino acids in cell culture to determine the identity of proteins that undergo O-GlcNAcylation in response to heat shock. Numerous proteins with diverse functions were identified, including NF-90, RuvB-like 1 (Tip49α), RuvB-like 2 (Tip49β), and several COPII vesicle transport proteins. Many of these proteins bind double-stranded DNA-dependent protein kinase (PK), or double-stranded DNA breaks, suggesting a role for O-GlcNAc in regulating DNA damage signaling or repair. Supporting this hypothesis, we have shown that DNA-PK is O-GlcNAc modified in response to numerous forms of cellular stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号