首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions via the selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist Gram-negative bacterial infection. Microbial recognition is achieved through peptidoglycan recognition proteins (PGRPs); Gram-positive bacteria activate the Toll pathway through a circulating PGRP (PGRP-SA), and Gram-negative bacteria activate the Imd pathway via PGRP-LC, a putative transmembrane receptor, and PGRP-LE. Gram-negative binding proteins (GNBPs) were originally identified in Bombyx mori for their capacity to bind various microbial compounds. Three GNBPs and two related proteins are encoded in the Drosophila genome, but their function is not known. Using inducible expression of GNBP1 double-stranded RNA, we now demonstrate that GNBP1 is required for Toll activation in response to Gram-positive bacterial infection; GNBP1 double-stranded RNA expression renders flies susceptible to Gram-positive bacterial infection and reduces the induction of the antifungal peptide encoding gene Drosomycin after infection by Gram-positive bacteria but not after fungal infection. This phenotype induced by GNBP1 inactivation is identical to a loss-of-function mutation in PGRP-SA, and our genetic studies suggest that GNBP1 acts upstream of the Toll ligand Sp?tzle. Altogether, our results demonstrate that the detection of Gram-positive bacteria in Drosophila requires two putative pattern recognition receptors, PGRP-SA and GNBP1.  相似文献   

2.
Eukaryotic peptidoglycan recognition proteins (PGRPs) are related to bacterial amidases. In Drosophila, PGRPs bind peptidoglycan and function as central sensors and regulators of the innate immune response. PGRP-LC/PGRP-LE constitute the receptor complex in the immune deficiency (IMD) pathway, which is an innate immune cascade triggered upon Gram-negative bacterial infection. Here, we present the functional analysis of the nonamidase, membrane-associated PGRP-LF. We show that PGRP-LF acts as a specific negative regulator of the IMD pathway. Reduction of PGRP-LF levels, in the absence of infection, is sufficient to trigger IMD pathway activation. Furthermore, normal development is impaired in the absence of functional PGRP-LF, a phenotype mediated by the JNK pathway. Thus, PGRP-LF prevents constitutive activation of both the JNK and the IMD pathways. We propose a model in which PGRP-LF keeps the Drosophila IMD pathway silent by sequestering circulating peptidoglycan.  相似文献   

3.
The Drosophila antimicrobial response is one of the best characterized systems of pattern recognition receptor-mediated defense in metazoans. Drosophila senses Gram-negative bacteria via two peptidoglycan recognition proteins (PGRPs), membrane-bound PGRP-LC and secreted/cytosolic PGRP-LE, which relay diaminopimelic acid (DAP)-type peptidoglycan sensing to the Imd signaling pathway. In the case of PGRP-LC, differential splicing of PGRP domain-encoding exons to a common intracellular domain-encoding exon generates three receptor isoforms, which differ in their peptidoglycan binding specificities. In this study, we used Phi31-mediated recombineering to generate fly lines expressing specific isoforms of PGRP-LC and assessed the tissue-specific roles of PGRP-LC isoforms and PGRP-LE in the antibacterial response. Our in vivo studies demonstrate the key role of PGRP-LCx in sensing DAP-type peptidoglycan-containing Gram-negative bacteria or Gram-positive bacilli during systemic infection. We also highlight the contribution of PGRP-LCa/x heterodimers to the systemic immune response to Gram-negative bacteria through sensing of tracheal cytotoxin (TCT), whereas PGRP-LCy may have a minor role in antagonizing the immune response. Our results reveal that both PGRP-LC and PGRP-LE contribute to the intestinal immune response, with a predominant role of cytosolic PGRP-LE in the midgut, the central section of endodermal origin where PGRP-LE is enriched. Our in vivo model also definitively establishes TCT as the long-distance elicitor of systemic immune responses to intestinal bacteria observed in a loss-of-tolerance model. In conclusion, our study delineates how a combination of extracellular sensing by PGRP-LC isoforms and intracellular sensing through PGRP-LE provides sophisticated mechanisms to detect and differentiate between infections by different DAP-type bacteria in Drosophila.  相似文献   

4.
Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.  相似文献   

5.
In innate immunity, pattern recognition molecules recognize cell wall components of microorganisms and activate subsequent immune responses, such as the induction of antimicrobial peptides and melanization in Drosophila. The diaminopimelic acid (DAP)-type peptidoglycan potently activates imd-dependent induction of antibacterial peptides. Peptidoglycan recognition protein (PGRP) family members act as pattern recognition molecules. PGRP-LC loss-of-function mutations affect the imd-dependent induction of antibacterial peptides and resistance to Gram-negative bacteria, whereas PGRP-LE binds to the DAP-type peptidoglycan, and a gain-of-function mutation induces constitutive activation of both the imd pathway and melanization. Here, we generated PGRP-LE null mutants and report that PGRP-LE functions synergistically with PGRP-LC in producing resistance to Escherichia coli and Bacillus megaterium infections, which have the DAP-type peptidoglycan. Consistent with this, PGRP-LE acts both upstream and in parallel with PGRP-LC in the imd pathway, and is required for infection-dependent activation of melanization in Drosophila. A role for PGRP-LE in the epithelial induction of antimicrobial peptides is also suggested.  相似文献   

6.
Drosophila peptidoglycan recognition protein (PGRP)-LCx and -LCa are receptors that preferentially recognize meso-diaminopimelic acid (DAP)-type peptidoglycan (PGN) present in Gram-negative bacteria over lysine-type PGN of gram-positive bacteria and initiate the IMD signaling pathway, whereas PGRP-LE plays a synergistic role in this process of innate immune defense. How these receptors can distinguish the two types of PGN remains unclear. Here the structure of the PGRP domain of Drosophila PGRP-LE in complex with tracheal cytotoxin (TCT), the monomeric DAP-type PGN, reveals a buried ionic interaction between the unique carboxyl group of DAP and a previously unrecognized arginine residue. This arginine is conserved in the known DAP-type PGN-interacting PGRPs and contributes significantly to the affinity of the protein for the ligand. Unexpectedly, TCT induces infinite head-to-tail dimerization of PGRP-LE, in which the disaccharide moiety, but not the peptide stem, of TCT is positioned at the dimer interface. A sequence comparison suggests that TCT induces heterodimerization of the ectodomains of PGRP-LCx and -LCa in a closely analogous manner to prime the IMD signaling pathway, except that the heterodimer formation is nonperpetuating.  相似文献   

7.
Peptidoglycan-recognition proteins (PGRPs) are evolutionarily conserved molecules that are structurally related to bacterial amidases. Several Drosophila PGRPs have lost this enzymatic activity and serve as microbe sensors through peptidoglycan recognition. Other PGRP family members, such as Drosophila PGRP-SC1 or mammalian PGRP-L, have conserved the amidase function and are able to cleave peptidoglycan in vitro. However, the contribution of these amidase PGRPs to host defense in vivo has remained elusive so far. Using an RNA-interference approach, we addressed the function of two PGRPs with amidase activity in the Drosophila immune response. We observed that PGRP-SC1/2-depleted flies present a specific over-activation of the IMD (immune deficiency) signaling pathway after bacterial challenge. Our data suggest that these proteins act in the larval gut to prevent activation of this pathway following bacterial ingestion. We further show that a strict control of IMD-pathway activation is essential to prevent bacteria-induced developmental defects and larval death.  相似文献   

8.
Yano T  Kurata S 《Autophagy》2008,4(7):958-960
Macroautophagy (referred to hereafter as autophagy) functions not only in self-digestion, but also in the killing and degradation of infectious pathogens in in vitro-cultured cells. Based on genetic manipulations of both the host, Drosophila and pathogen, Listeria monocytogenes, we recently reported that L. monocytogenes-induced autophagy is dependent on the recognition of the pathogen by the Drosophila pattern recognition protein, PGRP-LE. Autophagy and PGRP-LE are crucial for inhibition of the intracellular growth of bacteria in hemocytes, the target cells of L. monocytogenes infection in vivo. The importance of autophagy in the resistance of Drosophila against L. monocytogenes is further indicated in in vivo survival experiments. The signaling pathway(s) that induces autophagy by PGRP-LE is independent of the known immune signaling pathways, suggesting that another unidentified pathway(s) is involved. The results of the present study demonstrate that the induction of autophagy, as an innate immune response targeting intracellular pathogens, is activated by intracellular sensors through unidentified pathways.  相似文献   

9.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

10.
Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors.  相似文献   

11.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind peptidoglycans (PGNs) of bacterial cell walls. These molecules, which are highly conserved from insects to mammals, contribute to host defense against infections by both Gram-positive and Gram-negative bacteria. Here, we present the crystal structure of human PGRP-S at 1.70A resolution. The overall structure of PGRP-S, which participates in intracellular killing of Gram-positive bacteria, is similar to that of other PGRPs, including Drosophila PGRP-LB and PGRP-SA and human PGRP-Ialpha. However, comparison with these PGRPs reveals important differences in both the PGN-binding site and a groove formed by the PGRP-specific segment on the opposite face of the molecule. This groove, which may constitute a binding site for effector or signaling proteins, is less hydrophobic and deeper in PGRP-S than in PGRP-IalphaC, whose PGRP-specific segments vary considerably in amino acid sequence. By docking a PGN ligand into the PGN-binding cleft of PGRP-S based on the known structure of a PGRP-Ialpha-PGN complex, we identified potential PGN-binding residues in PGRP-S. Differences in PGN-contacting residues and interactions suggest that, although PGRPs may engage PGNs in a similar mode, structural differences exist that likely regulate the affinity and fine specificity of PGN recognition.  相似文献   

12.
Bacteria that colonize eukaryotic gut have profound influences on the physiology of their host. In Drosophila, many of these effects are mediated by adipocytes that combine immune and metabolic functions. We show here that enteric infection with some bacteria species triggers the activation of the SREBP lipogenic protein in surrounding enterocytes but also in remote fat body cells and in ovaries, an effect that requires insulin signaling. We demonstrate that by activating the NF-κB pathway, the cell wall peptidoglycan produced by the same gut bacteria remotely, and cell-autonomously, represses SREBP activation in adipocytes. We finally show that by reducing the level of peptidoglycan, the gut born PGRP-LB amidase balances host immune and metabolic responses of the fat body to gut-associated bacteria. In the absence of such modulation, uncontrolled immune pathway activation prevents SREBP activation and lipid production by the fat body.  相似文献   

13.
昆虫肽聚糖识别蛋白研究进展   总被引:4,自引:0,他引:4  
陈康康  吕志强 《昆虫学报》2014,57(8):969-978
在脊椎动物和非脊椎动物中,识别非己是天生免疫反应中的第一步。肽聚糖是细菌细胞壁的必需成分,属于进化上保守的微生物表面病原相关分子模式(pathogen-associated molecular pattern, PAMP),可以被模式识别蛋白(pattern recognition proteins, PRRs)如肽聚糖识别蛋白(peptidoglycan recognition proteins, PGRPs)识别。 在昆虫的天生免疫系统中,有些PGRPs能够利用细菌独有的肽聚糖识别入侵细菌,并将细菌入侵信号传递给下游的抗菌肽(antimicrobial peptide, AMP)合成途径,启动抗菌肽基因的转录及合成;PGRPs对肽聚糖的识别也会启动酚氧化酶原途径的激活,引起黑化反应。有些具有酰胺酶活性的PGRPs可以促进吞噬作用;有些可以抑制抗菌肽合成以减弱过度免疫反应带来的损伤。还有一些PGRPs作为效应因子直接作用于细菌将细菌杀死。本文主要从昆虫PGRPs作为识别受体(recognition receptor)、调节子(regulator)和效应因子(effector) 3个方面进行了综述,并分析了目前PGRPs研究中仍不清楚的问题和未来研究的方向。  相似文献   

14.
Typically, immune responses control the pathogen, while repair and stress pathways limit damage caused by pathogenesis. The relative contribution of damage to the outcome of pathogenesis and the mechanistic links between the immune and repair pathways are poorly understood. Here, we analyze how the entomopathogenic bacterium Pseudomonas entomophila induces irreversible damage to the Drosophila gut. We find that P. entomophila ingestion induces a global translational blockage that impairs both immune and repair programs in the fly gut. P. entomophila-induced translational inhibition is dependent on bacterial pore forming toxins and reactive oxygen species produced by the host in response to infection. Translational arrest is mediated through activation of the GCN2 kinase and inhibition of the TOR pathway as a consequence of host damage. Together, our study draws a model of pathogenesis in which bacterial inhibition of translation by excessive activation of stress responsive pathways inhibits both immune and regenerative epithelial responses.  相似文献   

15.
Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), is required to suppress the Imd innate immune signaling pathway in response to commensal bacteria. pims expression is Imd (immune deficiency) dependent, and its basal expression relies on the presence of commensal flora. In the absence of PIMS, resident bacteria trigger constitutive expression of antimicrobial peptide genes (AMPs). Moreover, pims mutants hyperactivate AMPs upon infection with Gram-negative bacteria. PIMS interacts with the peptidoglycan recognition protein (PGRP-LC), causing its depletion from the plasma membrane and shutdown of Imd signaling. Therefore, PIMS is required to establish immune tolerance to commensal bacteria and to maintain a balanced Imd response following exposure to bacterial infections.  相似文献   

16.
The gastrointestinal tract is a passageway for dietary nutrients, microorganisms and xenobiotics. The gut is home to diverse bacterial communities forming the microbiota. While bacteria and their metabolites maintain gut homeostasis, the host uses innate and adaptive immune mechanisms to cope with the microbiota and luminal environment. In recent years, multiple bi-directional instructive mechanisms between microbiota, luminal content and mucosal immune systems have been uncovered. Indeed, epithelial and immune cell-derived mucosal signals shape microbiota composition, while microbiota and their by-products shape the mucosal immune system. Genetic and environmental perturbations alter gut mucosal responses which impact on microbial ecology structures. On the other hand, changes in microbiota alter intestinal mucosal responses. In this review, we discuss how intestinal epithelial Paneth and goblet cells interact with the microbiota, how environmental and genetic disorders are sensed by endoplasmic reticulum stress and autophagy responses, how specific bacteria, bacterial- and diet-derived products determine the function and activation of the mucosal immune system. We will also discuss the critical role of HDAC activity as a regulator of immune and epithelial cell homeostatic responses.  相似文献   

17.
The immune deficiency (Imd) signaling pathway is activated by Gram‐negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram‐negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP‐LC and PGRP‐LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram‐negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram‐negative bacteria in an immune responsive silkworm cell line, Bm‐NIAS‐aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP‐L6) is involved in the activation of E. coli or E. coli‐PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP‐L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP‐L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP‐L6 binds to DAP‐type PGNs, although it also binds to lysine‐type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP‐L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells.  相似文献   

18.
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules with a diverse array of functions. In this issue of Cell Host & Microbe, Maillet and colleagues demonstrate that a Drosophila PGRP, PGRP-LF, functions as a negative regulator of the Drosophila immune deficiency (IMD) pathway, an innate immune signaling mechanism responsive to Gram-negative bacteria. PGRP-LF deficiency results in unregulated immune signaling, causing excessive antimicrobial peptide synthesis and, surprisingly, developmental defects.  相似文献   

19.
Three cDNA clones encoding peptidoglycan recognition proteins (PGRP-B, -C and -D) were isolated from larval fat body of immunized Samia cynthia ricini. The deduced amino acid sequences show high homology to each other and also to Drosophila PGRP-LB, but rather lower homology to all of the known lepidopteran PGRPs including Samia PGRP-A, a receptor-type PGRP. The three PGRPs conserve the five amino acid residues which form the catalytic site of N-acetylmuramoyl L-alanine amidase as in Drosophila LB. The PGRP-C and -D genes were silent in naive larvae, but strongly induced in fat body by an injection of peptidoglycan. PGRP-B gene, in contrast, constitutively expressed at high levels in naive midgut, and the gene was weakly induced in fat body after injection of peptidoglycan.  相似文献   

20.
Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号