首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对金发草(Pogonatherum paniceum)第3组LEA蛋白(PpLEA3)基因两个剪接体进行分析,并利用酿酒酵母表达系统分析两个剪接体在不同非生物胁迫的响应差异.以PpLEA3基因两个剪接体(PpLEA3.a和PpLEA3.b)的重组载体pMD19-T-PpLEA3.a和pMD19-T-PpLEA3.b为模板,PCR法构建酵母表达载体pYES2-PpLEA3.a和pYES2-PpLEA3.b,并转化酿酒酵母细胞得到重组菌INV-PpLEA3.a和INV-PpLEA3.b.通过比较重组菌和对照菌(转空载体pYES2)在NaCl、NaHCO3、低温、干旱、UV胁迫下的恢复生长状况,结果表明两种重组菌胁迫后的生长情况明显好于对照菌,两个剪接体对非生物胁迫抵抗力的大小为:PpLEA3.a>PpLEA3.b.两个剪接体在核酸序列上的差异导致了在蛋白亲水性和结构上的差异,最终导致了在抗逆能力方面的差异.  相似文献   

2.
3.
4.
Structure of a ribosomal protein gene in Mucor racemosus.   总被引:2,自引:1,他引:1       下载免费PDF全文
L Sosa  W A Fonzi    P S Sypherd 《Nucleic acids research》1989,17(22):9319-9331
  相似文献   

5.
6.
7.
8.
Salinity stress is a major limiting factor in agriculture and adversely affecting the whole plant. As a halophyte, the moss Physcomitrella patens, has been suggested to be an ideal model plant to study salinity tolerance and adaption. Two abiotic stress-responsive Group 3 Late Embryogenesis Abundant protein genes had been identified in P. patens and named as PpLEA3-1 and PpLEA3-2, respectively. Functions of these two genes were analyzed by heterologous expressions in Arabidopsis, driven either by their native P. patens promoters or by the 35S CaMV constitutive promoter. Phenotype analysis revealed that pLEA3::LEA3, pLEA3::LEA3::GFP and 35S::LEA3::GFP transgenic lines had stronger salinity resistance than that in the wild type and empty-vector control. Further analysis showed that the contents of proline and soluble sugar were increased and the malondialdehyde (MDA) were repressed in these transgenic plants after exposure to salinity stress. Our observations indicate that these two Group 3 PpLEA genes played a role in the adaption to salinity stress.  相似文献   

9.
10.
Two New Group 3 LEA Genes of Wheat and Their Functional Analysis in Yeast   总被引:4,自引:0,他引:4  
The group 3 late embryogenesis abundant (LEA) proteins are thought to protect cells from stresses associated with dehydration during periods of water deficit. To investigate the functions of different members of the group 3 LEA genes, we isolated and characterized two new group 3 LEA genes, namely TaLEA2 and TaLEA3, from wheat (Triticum aestivum L.) and introduced TaLEA2 and TaLEA3 into Saccharmyces cerevisiae to examine the effect of these genes on yeast cell tolerance to osmotic, salt, and cold stresses. The TaLEA2 gene encoded a protein of 211 amino acids and possessed five repeats of 11-mer amino acid motifs. The TaLEA3 gene encoded a polypeptide of 211 amino acids with nine repeated units. Overexpression of TaLEA2 and TaLEA3 improved stress tolerance in transgenic yeast cells when cultured in medium containing sorbitol, salt and-20℃ freezing treatments respectively. However, the yeast transformants with TaLEA2 seemed to be more tolerant to hyperosmotic and freezing stress than transformants with TaLEA3. This implies that a close relationship exists between function and the number of repeats of the 11- mer amino acid motif in the group 3 LEA protein.  相似文献   

11.
A novel cor gene was cloned from Capsella bursa-pastoris (designated Cbcor15b) by RACE-PCR. The full-length cDNA of Cbcor15b was 652bp and contained a 417bp open reading frame (ORF) encoding a 139-amino acid hydrophilic protein. Multiple alignments showed that Cbcor15b had high similarity with other cold-regulated genes from Arabidopsis thaliana (cor15b, cor15a), Brassica napus (bn115, bn19 and bn26) and genes encoding late embryogenesis abundant (LEA) proteins. The predicted CbCOR15B protein was found to have a potential chloroplast signal sequence cleavage site, two cAMP- and cGMP-dependent protein kinase (PKA and PKG) phosphorylation sites. Cold acclimation assay showed that Cbcor15b was relevant to cold acclimation. Our study implies that Cbcor15b might have similar functions possessed by other cor genes in increasing plants' freezing tolerance.  相似文献   

12.
13.
14.
15.
Late embryogenesis abundant (LEA) proteins are speculated to protect against water stress in plants. Group 1 LEA proteins are hydrophilic and vary mainly in the numbers of an extremely hydrophilic internal 20-amino-acid motif. This motif is present up to four times in Arabidopsisthaliana and Hordeum vulgare Group 1 proteins and has been described in numerous plant species. However, no similarity has yet been described between Group 1 genes or gene products and those from non-plant species. We report here the striking similarity between the repeated internal motif of Group 1 LEA proteins and a repeated hydrophilic motif present in a stress-related protein (GsiB) from Bacillus subtilis. Received: 20 April 1998 / Accepted: 18 May 1998  相似文献   

16.
17.
18.
19.
Chicken vigilin was identified as a member of an evolutionary-conserved protein family with a unique repetitive domain structure. 14 tandemly repeated domains are found in chicken vigilin, all of which consist of a conserved sequence motif (subdomain A) and a potential alpha-helical region (subdomain B) [1]. We have established the physical structure of the chicken vigilin gene by restriction-fragment analysis and DNA sequencing of overlapping clones isolated from a phage lambda genomic DNA library. The chicken vigilin gene is a single-copy gene with a total of 27 exons which are distributed over a region of some 22 kbp. Exon 1 codes for a portion of the 5' untranslated region, exon 2 contains the translation start point and forms, along with exons 3 and 4, the N-terminal non-domain region. Exons 5-25 encode the vigilin domains 1-14 and the remaining exons 26 and 27 contain the non-domain C-terminal as well as the untranslated regions. The domain structure of the protein is reflected in the positioning of introns which demarcate individual domains. While domains 1-3 and 8-10 are each encoded by a single exon (5-7, 16-18); all other domains are contained in a set of two exons which are separated by introns interspersed at variable positions of the DNA segment coding for the conserved sequence motif. In conclusion, the data presented suggest that the chicken vigilin gene evolved by amplification of a primordial exon unit coding for the fundamental bipartite vigilin domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号