共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract We monitored the binding of triplex-forming oligopyrimidines to the double-stranded stem of the RNA hairpin responsible for the gag-pol frameshift in HIV-1. Whereas the substitution of 5, propynyl-C for C had a limited effect, the use of a Peptide Nucleic Acid 12mer led to a drastic reduction in the stability of the oligomer/RNA complex. 相似文献
3.
4.
Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells), that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs), one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrically, where centrosome plays an important role. Utilizing time-lapse live cell imaging, customized tracking, and image processing programs, we found that most acentrosomal GSCs have the spectrosomes reposition from the basal end (wild type) to the apical end close to hub-GSC interface (acentrosomal GSCs). In addition, these apically positioned spectrosomes were mostly stationary while the basally positioned spectrosomes were mobile. For acentrosomal GSCs, their mitotic spindles were still highly oriented and divided asymmetrically with longer mitosis duration, resulting in asymmetric divisions. Moreover, when the spectrosome was knocked out, the centrosomes velocity decreased and centrosomes located closer to hub-GSC interface. We propose that in male GSCs, the spectrosome recruited to the apical end plays a complimentary role in ensuring proper spindle orientation when centrosome function is compromised. 相似文献
5.
6.
《Cell cycle (Georgetown, Tex.)》2013,12(18):2201-2204
Hematopoietic stem cells (HSC) are undifferentiated cells, which self-renew over a long period of time and give rise to committed hematopoietic progenitor cells (HPC) containing the capability to replenish the whole blood system. Since both uncontrolled expansion as well as loss of HSC would be fatal, the decision of self-renewal versus differentiation needs to be tightly controlled. There is good evidence that both HSC niches as well as asymmetric cell divisions are involved in controlling whether HSC self-renew or become committed to differentiate. In this context, we recently identified four proteins which frequently segregate asymmetrically in dividing HSC/HPC. Remarkably, three of these proteins, the tetraspanins CD53 and CD63, and the transferrin receptor are endosome-associated proteins. Here, we highlight these observations in conjunction with recent findings in model organisms which show that components of the endosomal machinery are involved in cell-fate specification processes. 相似文献
7.
8.
Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation (H3K27me3), an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, making it difficult to determine the precise roles of PRC2 during lineage commitment. Moreover, while studies suggest that PRC2 prevents DNA methylation, how these two epigenetic regulators coordinate to regulate lineage programs is poorly understood. Using several PRC2 mutant ESC lines that maintain varying levels of H3K27me3, we found that partial maintenance of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). In contrast, genes that function to specify other lineages failed to be repressed in these cells, suggesting that PRC2 is also necessary for lineage fidelity. We also found that loss of H3K27me3 leads to a modest gain in DNA methylation at PRC2 target regions in both ESCs and in SMNs. Our study demonstrates a critical role for PRC2 in safeguarding lineage decisions and in protecting genes against inappropriate DNA methylation. 相似文献
9.
Di Chen Chan Wu Shaowei Zhao Qing Geng Yu Gao Xin Li Yang Zhang Zhaohui Wang 《PLoS genetics》2014,10(11)
In regenerative tissues, one of the strategies to protect stem cells from genetic aberrations, potentially caused by frequent cell division, is to transiently expand the stem cell daughters before further differentiation. However, failure to exit the transit amplification may lead to overgrowth, and the molecular mechanism governing this regulation remains vague. In a Drosophila mutagenesis screen for factors involved in the regulation of germline stem cell (GSC) lineage, we isolated a mutation in the gene CG32364, which encodes a putative RNA-binding protein (RBP) and is designated as tumorous testis (tut). In tut mutant, spermatogonia fail to differentiate and over-amplify, a phenotype similar to that in mei-P26 mutant. Mei-P26 is a TRIM-NHL tumor suppressor homolog required for the differentiation of GSC lineage. We found that Tut binds preferentially a long isoform of mei-P26 3′UTR, and is essential for the translational repression of mei-P26 reporter. Bam and Bgcn are both RBPs that have also been shown to repress mei-P26 expression. Our genetic analyses indicate that tut, bam, or bgcn is required to repress mei-P26 and to promote the differentiation of GSCs. Biochemically, we demonstrate that Tut, Bam, and Bgcn can form a physical complex in which Bam holds Tut on its N-terminus and Bgcn on its C-terminus. Our in vivo and in vitro evidence illustrate that Tut acts with Bam, Bgcn to accurately coordinate proliferation and differentiation in Drosophila germline stem cell lineage. 相似文献
10.
11.
Kazuhiko Fujimura Tetsuhiro Niidome Yoriko Shinozuka Yasuhiko Izumi Takeshi Kihara Hachiro Sugimoto Akinori Akaike Toshiaki Kume 《PloS one》2015,10(2)
Neural stem/progenitor cells (NSPCs) proliferate and differentiate depending on their intrinsic properties and local environment. During the development of the mammalian nervous system, NSPCs generate neurons and glia sequentially. However, little is known about the mechanism that determines the timing of switch from neurogenesis to gliogenesis. In this study, we established a culture system in which the neurogenic potential of NSPCs is decreased in a time-dependent manner, so that short-term-cultured NSPCs differentiate into more neurons compared with long-term-cultured NSPCs. We found that short-term-cultured NSPCs express high levels of integrin-associated protein form 2 (IAP2; so-called CD47) mRNA using differential display analysis. Moreover, IAP2 overexpression in NSPCs induced neuronal differentiation of NSPCs. These findings reveal a novel mechanism by which IAP2 induces neuronal differentiation of NSPCs. 相似文献
12.
Jessica E. Petrillo P. Arno Venter James R. Short Radhika Gopal Safia Deddouche Olivier Lamiable Jean-Luc Imler Anette Schneemann 《Journal of virology》2013,87(24):13409-13421
Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3′ end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle. 相似文献
13.
Neural stem cells (NSCs) can be isolated from different regions of the central nervous system. There has been controversy whether regional differences amongst stem and progenitor cells are cell intrinsic and whether these differences are maintained during expansion in culture. The identification of inherent regional differences has important implications for the use of these cells in neural repair. Here, we compared NSCs derived from the spinal cord and embryonic cortex. We found that while cultured cortical and spinal cord derived NSCs respond similarly to mitogens and are equally neuronogenic, they retain and maintain through multiple passages gene expression patterns indicative of the region from which they were isolated (e.g Emx2 and HoxD10). Further microarray analysis identified 229 genes that were differentially expressed between cortical and spinal cord derived neurospheres, including many Hox genes, Nuclear receptors, Irx3, Pace4, Lhx2, Emx2 and Ntrk2. NSCs in the cortex express LeX. However, in the embryonic spinal cord there are two lineally related populations of NSCs: one that expresses LeX and one that does not. The LeX negative population contains few markers of regional identity but is able to generate LeX expressing NSCs that express markers of regional identity. LeX positive cells do not give rise to LeX-negative NSCs. These results demonstrate that while both embryonic cortical and spinal cord NSCs have similar self-renewal properties and multipotency, they retain aspects of regional identity, even when passaged long-term in vitro. Furthermore, there is a population of a LeX negative NSC that is present in neurospheres derived from the embryonic spinal cord but not the cortex. 相似文献
14.
中心体是大部分动物细胞的微管组织中心,它确保了有序的细胞周期进程以及染色体的精确分离,我们之前报道了中心体蛋白Centlein作为一个分子连接,与C-Nap1和Cep68一起形成复合物维持中心体的连接. 然而,关于Centlein的其他功能我们还知之甚少. 在本研究中,建立了Centlein的敲除细胞系,并且运用RNA-seq技术分析了敲除细胞系和正常野生型细胞系之间转录水平的差异. 发现Centlein敲除细胞系中细胞周期相关基因PLK1、CCNB1、CCNA2和CDC20的表达量上调,流式结果又表明Centlein的敲除促进了细胞周期进程. 同时发现Centlein与PLK1之间存在细胞内相互作用,于是我们提出了Centlein通过与PLK1的作用参与细胞周期进程. 相似文献
15.
神经祖细胞的不对称分裂是神经发生的必要环节.近年来关于不对称分裂的研究,为果蝇及哺乳动物中枢神经系统发育期间神经祖细胞的分化机制提供了新的理解.在这一分裂模式中,纺锤体作为细胞结构的支架,受到细胞皮层极性信号的引导而改变取向,保证底部细胞命运决定子(cell fate determinants)的不对称分配.G蛋白亚基、各种接头蛋白及微管相关蛋白组成极性蛋白复合体,在纺锤体取向改变中发挥了有序的调节作用.现在细胞和分子水平探讨不对称分裂纺锤体与细胞皮层极性偶联这一标志性事件. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(6):699-701
Signaling by the canonical Wnt pathway has multiple functions in stem cells. It caneither control stem cell expansion or –as we have recently demonstrated withneural crest stem cells– influence cell lineage decisions by promoting specific fatesat the expense of others. Thus, the role of canonical Wnt in stem cells is dependenton cell-intrinsic properties that determine how a cell responds to Wnt. Themolecular basis for the functional diversity of Wnt in different stem cell typesremains to be elucidated. 相似文献
17.
During development of the cerebral cortex, neural stem cells (NSCs) divide symmetrically to proliferate and asymmetrically to generate neurons. Although faithful segregation of mitotic chromosomes is critical for NSC divisions, its fundamental mechanism remains unclear. A class of evolutionarily conserved protein complexes, known as condensins, is thought to be central to chromosome assembly and segregation among eukaryotes. Here we report the first comprehensive genetic study of mammalian condensins, demonstrating that two different types of condensin complexes (condensins I and II) are both essential for NSC divisions and survival in mice. Simultaneous depletion of both condensins leads to severe defects in chromosome assembly and segregation, which in turn cause DNA damage and trigger p53-induced apoptosis. Individual depletions of condensins I and II lead to slower loss of NSCs compared to simultaneous depletion, but they display distinct mitotic defects: chromosome missegregation was observed more prominently in NSCs depleted of condensin II, whereas mitotic delays were detectable only in condensin I-depleted NSCs. Remarkably, NSCs depleted of condensin II display hyperclustering of pericentric heterochromatin and nucleoli, indicating that condensin II, but not condensin I, plays a critical role in establishing interphase nuclear architecture. Intriguingly, these defects are taken over to postmitotic neurons. Our results demonstrate that condensins I and II have overlapping and non-overlapping functions in NSCs, and also provide evolutionary insight into intricate balancing acts of the two condensin complexes. 相似文献
18.
19.
Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein. 相似文献
20.
Mu Yun Li Yingzi Gao Jie Liu Guanxin Zeng Zimei Cao Zhen Li Zhi Nie Yingjie Sun Lunquan Chen Tao Deng Yuezhen Zhou Chengzhi 《International journal of biological sciences》2022,18(1):214
Resistance to radiotherapy is frequently observed in the clinic and leads to poor prognosis of non-small cell lung cancer (NSCLC). How to overcome resistance to radiotherapy is a challenge in the treatment of NSCLC. In this study, PPDPF was found to be upregulated in NSCLC tissues and cell lines, and its expression negatively correlated with the overall survival of patients with NSCLC. PPDPF promoted the growth, colony formation and invasion of lung cancer cells. Moreover, knockout of PPDPF inhibited tumorigenesis in the KL (KrasG12D; LKB1f/f) mouse model of lung cancer. Additionally, overexpression of PPDPF led to radioresistance in lung cancer cells, and knockdown of PPDPF sensitized lung cancer cells to radiotherapy. Mechanistically, PPDPF interacted with BABAM2 (an antiapoptotic protein) and blocked its ubiquitination by MDM2, thus stabilizing BABAM2 and promoting the radioresistance of lung cancer cells. Our present study suggested PPDPF as a therapeutic target in NSCLC. 相似文献