首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.  相似文献   

2.
The behaviour of neural progenitors in the intact vertebrate brain and spinal cord is poorly understood, chiefly because of the inaccessibility and poor optical qualities inherent in many model systems. To overcome these problems we have studied the optically superior brain of the zebrafish embryo and have monitored the in vivo behaviour of fluorescently labelled neural progenitors and their daughter cells throughout a substantial period of hindbrain development. We find the majority (84%) of hindbrain neurons are born from progenitor divisions that generate two neurons and 68% of reconstructed lineage trees contained no asymmetric stem cell-like divisions. No progenitors divided in the manner expected of a classic stem cell; i.e. one that repeatedly self-renews and generates a differentiated cell type by asymmetric division. We also analysed the orientation of progenitor divisions relative to the plane of the ventricular zone (VZ) and find that this does not correlate with the fate of the daughter cells. Our results suggest that in this vertebrate system the molecular determinants that control whether a cell will become a neuron are usually not linked to a mechanism that generates asymmetric divisions.  相似文献   

3.
Sanada K  Tsai LH 《Cell》2005,122(1):119-131
Neurons in the developing mammalian brain are generated from progenitor cells in the proliferative ventricular zone, and control of progenitor division is essential to produce the correct number of neurons during neurogenesis. Here we establish that Gbetagamma subunits of heterotrimeric G proteins are required for proper mitotic-spindle orientation of neural progenitors in the developing neocortex. Interfering with Gbetagamma function in progenitors causes a shift in spindle orientation from apical-basal divisions to planar divisions. This results in hyperdifferentiation of progenitors into neurons as a consequence of both daughter cells adopting a neural fate instead of the normal asymmetric cell fates. Silencing AGS3, a nonreceptor activator of Gbetagamma, results in defects similar to the impairment of Gbetagamma, providing evidence that AGS3-Gbetagamma signaling in progenitors regulates apical-basal division and asymmetric cell-fate decisions. Furthermore, our observations indicate that the cell-fate decision of daughter cells is coupled to mitotic-spindle orientation in progenitors.  相似文献   

4.
Asymmetric cell divisions occur repeatedly during plant development, but the mechanisms by which daughter cells are directed to adopt different fates are not well understood [1,2]. Previous studies have demonstrated roles for positional information in specification of daughter cell fates following asymmetric divisions in the embryo [3] and root [4]. Unequally inherited cytoplasmic determinants have also been proposed to specify daughter cell fates after some asymmetric cell divisions in plants [1,2,5], but direct evidence is lacking. Here we investigate the requirements for specification of stomatal subsidiary cell fate in the maize leaf by analyzing four mutants disrupting the asymmetric divisions of subsidiary mother cells (SMCs). We show that subsidiary cell fate does not depend on proper localization of the new cell wall during the SMC division, and is not specified by positional information acting on daughter cells after completion of the division. Instead, our data suggest that specification of subsidiary cell fate depends on polarization of SMCs and on inheritance of the appropriate daughter nucleus. We thus provide evidence of a role for unequal inheritance of an intracellular determinant in specification of cell fate after an asymmetric plant cell division.  相似文献   

5.
Mature neocortical layers all derive from the cortical plate (CP), a transient zone in the dorsal telencephalon into which young neurons are continuously delivered. To understand cytogenetic and histogenetic events that trigger the emergence of the CP, we have used a slice culture technique. Most divisions at the ventricular surface generated paired cycling daughters (P/P divisions) and the majority of the P/P divisions were asymmetric in daughter cell behavior; they frequently sent one daughter cell to a non-surface (NS) position, the subventricular zone (SVZ), within a single cell-cycle length while keeping the other mitotic daughter for division at the surface. The NS-dividing cells were mostly Hu+ and their daughters were also Hu+, suggesting their commitment to the neuronal lineage and supply of early neurons at a position much closer to their destiny than from the ventricular surface. The release of a cycling daughter cell to SVZ was achieved by collapse of the ventricular process of the cell, followed by its NS division. Neurogenin2 (Ngn2) was immunohistochemically detected in a certain cycling population during G1 phase and was further restricted during G2-M phases to the SVZ-directed population. Its retroviral introduction converted surface divisions to NS divisions. The asymmetric P/P division may therefore contribute to efficient neuron/progenitor segregation required for CP initiation through cell cycle-dependent and lineage-restricted expression of Ngn2.  相似文献   

6.
It has long been argued that cell cycle regulators such as cyclins, cyclin-dependent kinases and their inhibitors affect the fate of neuronal progenitor cells. Recently, we identified that cyclin D2, which localizes at the basal tip of the radial glial cell (i.e., the neural progenitor in the developing neocortex), functions to give differential cell fates to its daughter cells just after cell division. This basally biased localization is due to transportation of cyclin D2 mRNA via its unique cis-regulatory sequence and local translation into cyclin D2 protein at the basal endfoot. During division of the neural progenitor cells, cyclin D2 protein is inherited by the daughter cell that retain the basal process, resulting in asymmetric distribution of cyclin D2 protein between the two daughter cells. Cyclin D2 is similarly localized in the human fetal cortical primordium, suggesting a common mechanism for the maintenance of neural progenitors and a possible scenario in evolution of primate brains. Here we introduce our recent findings and discuss how cyclin D2 functions in mammalian brain development and evolution.  相似文献   

7.
It has long been argued that cell cycle regulators such as cyclins, cyclin-dependent kinases and their inhibitors affect the fate of neuronal progenitor cells. Recently, we identified that cyclin D2, which localizes at the basal tip of the radial glial cell (i.e., the neural progenitor in the developing neocortex), functions to give differential cell fates to its daughter cells just after cell division. This basally biased localization is due to transportation of cyclin D2 mRNA via its unique cis-regulatory sequence and local translation into cyclin D2 protein at the basal endfoot. During division of the neural progenitor cells, cyclin D2 protein is inherited by the daughter cell that retain the basal process, resulting in asymmetric distribution of cyclin D2 protein between the two daughter cells. Cyclin D2 is similarly localized in the human fetal cortical primordium, suggesting a common mechanism for the maintenance of neural progenitors and a possible scenario in evolution of primate brains. Here we introduce our recent findings and discuss how cyclin D2 functions in mammalian brain development and evolution.  相似文献   

8.
For the understanding of histogenetic events in the 3-D retinal neuroepithelium, direct observation of the progenitor cells and their morphological changes is required. A slice culture method has been developed by which the behavior of single progenitor cells can be monitored. Although it has been believed that each retinal progenitor cell loses its basal process while it is in M phase, it is reported here that the process is retained throughout M phase and is inherited by one daughter cell, which can be a neuron or a progenitor cell. Daughter neurons used an inherited process for neuronal translocation and positioning. In divisions that produced two mitotic daughters, both of which subsequently divided to form four granddaughter cells, only one daughter cell inherited the original basal process while the other extended a new process. Interestingly, behavioral differences were often noted between such mitotic sisters in the trajectory of interkinetic nuclear movement, cell cycle length, and the composition of the granddaughter pair. Therefore, "symmetric" (progenitor --> progenitor + progenitor) divisions are in fact morphologically asymmetric, and the behavior of the mitotic daughters can often be asymmetric, indicating the necessity for studying possible associations between the process inheritance and the cell fate choice.  相似文献   

9.
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.  相似文献   

10.
In the Drosophila CNS, neuroblasts undergo self-renewing asymmetric divisions, whereas their progeny, ganglion mother cells (GMCs), divide asymmetrically to generate terminal postmitotic neurons. It is not known whether GMCs have the potential to undergo self-renewing asymmetric divisions. It is also not known how precursor cells undergo self-renewing asymmetric divisions. Here, we report that maintaining high levels of Mitimere or Nubbin, two POU proteins, in a GMC causes it to undergo self-renewing asymmetric divisions. These asymmetric divisions are due to upregulation of Cyclin E in late GMC and its unequal distribution between two daughter cells. GMCs in an embryo overexpressing Cyclin E, or in an embryo mutant for archipelago, also undergo self-renewing asymmetric divisions. Although the GMC self-renewal is independent of inscuteable and numb, the fate of the differentiating daughter is inscuteable and numb-dependent. Our results reveal that regulation of Cyclin E levels, and asymmetric distribution of Cyclin E and other determinants, confer self-renewing asymmetric division potential to precursor cells, and thus define a pathway that regulates such divisions. These results add to our understanding of maintenance and loss of pluripotential stem cell identity.  相似文献   

11.
Asymmetric division is a fundamental mechanism of generating cell diversity during development. One of its hallmarks is asymmetric localization during mitosis of proteins that specify daughter cell fate. Studies in Drosophila show that subcellular localization of many proteins required for asymmetric division of neuronal progenitors correlates with progression through mitosis. Yet, how cell cycle and asymmetric division machineries cooperate remains unclear. Recent data show that (1) key cell cycle regulators are required for asymmetric localization of cell fate determinants and for cell fate determination and (2) molecules that mediate asymmetric division can also act to modulate proliferation potential of progenitor cells.  相似文献   

12.
Sun Y  Goderie SK  Temple S 《Neuron》2005,45(6):873-886
It has been debated whether asymmetric distribution of cell surface receptors during mitosis could generate asymmetric cell divisions by yielding daughters with different environmental responsiveness and, thus, different fates. We have found that in mouse embryonic forebrain ventricular and subventricular zones, the EGFR can distribute asymmetrically during mitosis in vivo and in vitro. This occurs during divisions yielding two Nestin+ progenitor cells, via an actin-dependent mechanism. The resulting sibling progenitor cells respond differently to EGFR ligand in terms of migration and proliferation. Moreover, they express different phenotypic markers: the EGFRhigh daughter usually has radial glial/astrocytic markers, while its EGFRlow sister lacks them, indicating fate divergence. Lineage trees of cultured cortical glioblasts reveal repeated EGFR asymmetric distribution, and asymmetric divisions underlie formation of oligodendrocytes and astrocytes in clones. These data suggest that asymmetric EGFR distribution contributes to forebrain development by creating progenitors with different proliferative, migratory, and differentiation responses to ligand.  相似文献   

13.
From invertebrates to mammals, cell-cycle progression during an asymmetric cell division is accompanied by precisely timed redistribution of cell-fate determinants so that they segregate asymmetrically to enable the two daughter cells to choose different fates. Interestingly, studies on how cell fates are specified in such divisions reveal that the same fate determinants can be reiteratively used to specify a variety of cell types through multiple rounds of cell divisions or to exert seemingly contradictory effects on cell proliferation and differentiation. Here I summarize the molecular mechanisms governing asymmetric cell division and review recent findings pointing to a novel mechanism for coupling intracellular signaling and cell-cycle progression. This mechanism uses changes in the morphology, subcellular distribution, and molecular composition of cellular organelles like the Golgi apparatus and centrosomes, which not only accompany the progression of cell cycle to activate but also temporally constrain the activity of fate determinants during asymmetric cell divisions.  相似文献   

14.
Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.  相似文献   

15.
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.  相似文献   

16.
Asymmetric cell division occurs when a mother cell divides to generate two distinct daughter cells, a process that promotes the generation of cellular diversity in metazoans. During Caenorhabditis elegans development, the asymmetric divisions of neural progenitors generate neurons, neural support cells and apoptotic cells. C. elegans HAM-1 is an asymmetrically distributed cortical protein that regulates several of these asymmetric neuroblast divisions. Here, we show that HAM-1 is a novel protein and define residues important for HAM-1 function and distribution to the cell cortex. Our phenotypic analysis of ham-1 mutant embryos suggests that HAM-1 controls only neuroblast divisions that produce apoptotic cells. Moreover, ham-1 mutant embryos contain many unusually large cell-death corpses. An investigation of this corpse phenotype revealed that it results from a reversal of neuroblast polarity. A misplacement of the neuroblast cleavage plane generates daughter cells of abnormal size, with the apoptotic daughters larger than normal. Thus, HAM-1 regulates the position of the cleavage plane, apoptosis and mitotic potential in C. elegans asymmetric cell divisions.  相似文献   

17.
During asymmetric cell division, protein determinants are segregated into one of the two daughter cells. The Numb protein acts as a segregating determinant during both mouse and Drosophila development. In flies, Numb localizes asymmetrically and is required for cell-fate specification in the central and peripheral nervous systems, as well as during muscle and heart development. Whether its asymmetric segregation is important to the performance of these functions is not firmly established. Here, we demonstrate that Numb acts both in a localization-dependent and in a localization-independent manner. We have generated numb mutants that affect only the asymmetric localization of the protein during mitosis. We demonstrate that asymmetric segregation of Numb into one of the two daughter cells is absolutely essential for cell-fate specification in the Drosophila peripheral nervous system. Numb localization is also essential in MP2 neuroblasts in the central nervous system and during muscle development. Surprisingly, in dividing ganglion mother cells or during heart development, Numb function is independent of its ability to segregate asymmetrically in mitosis. Our results suggest that two classes of asymmetric cell division exist, each with different requirements for asymmetric inheritance of cell-fate determinants.  相似文献   

18.
Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior-posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical-basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila.  相似文献   

19.
During asymmetric stem cell division, polarization of the cell cortex targets fate determinants unequally into the sibling daughters, leading to regeneration of a stem cell and production of a progenitor cell with restricted developmental potential. In mitotic neural stem cells (neuroblasts) in fly larval brains, the antagonistic interaction between the polarity proteins Lethal (2) giant larvae (Lgl) and atypical Protein Kinase C (aPKC) ensures self-renewal of a daughter neuroblast and generation of a progenitor cell by regulating asymmetric segregation of fate determinants. In the absence of lgl function, elevated cortical aPKC kinase activity perturbs unequal partitioning of the fate determinants including Numb and induces supernumerary neuroblasts in larval brains. However, whether increased aPKC function triggers formation of excess neuroblasts by inactivating Numb remains controversial. To investigate how increased cortical aPKC function induces formation of excess neuroblasts, we analyzed the fate of cells in neuroblast lineage clones in lgl mutant brains. Surprisingly, our analyses revealed that neuroblasts in lgl mutant brains undergo asymmetric division to produce progenitor cells, which then revert back into neuroblasts. In lgl mutant brains, Numb remained localized in the cortex of mitotic neuroblasts and failed to segregate exclusively into the progenitor cell following completion of asymmetric division. These results led us to propose that elevated aPKC function in the cortex of mitotic neuroblasts reduces the function of Numb in the future progenitor cells. We identified that the acyl-CoA binding domain containing 3 protein (ACBD3) binding region is essential for asymmetric segregation of Numb in mitotic neuroblasts and suppression of the supernumerary neuroblast phenotype induced by increased aPKC function. The ACBD3 binding region of Numb harbors two aPKC phosphorylation sites, serines 48 and 52. Surprisingly, while the phosphorylation status at these two sites directly impinged on asymmetric segregation of Numb in mitotic neuroblasts, both the phosphomimetic and non-phosphorylatable forms of Numb suppressed formation of excess neuroblasts triggered by increased cortical aPKC function. Thus, we propose that precise regulation of cortical aPKC kinase activity distinguishes the sibling cell identity in part by ensuring asymmetric partitioning of Numb into the future progenitor cell where Numb maintains restricted potential independently of regulation by aPKC.  相似文献   

20.
The SCARECROW gene's role in asymmetric cell divisions in rice plants   总被引:6,自引:0,他引:6  
Asymmetric cell division is one of the most important mechanisms in the diversification of cell function and fate. In Arabidopsis, SCARECROW (SCR) is essential for the asymmetric division of the cortex/endodermis progenitor cell in the root. To learn more about how SCR is involved in asymmetric division, we analyzed the rice SCR (OsSCR) expression. In the root tip, OsSCR expression was observed in the endodermal cell layer and downregulated in the daughter cortex cell after asymmetric division, just as with Arabidopsis SCR. In leaf primordia, expression of OsSCR was observed in stomatal and ligule formation. In stomatal development, OsSCR was specifically expressed in the stomatal cell files before formation of guard mother cells (GMCs), and then, its expression was localized in GMCs, when the first asymmetric division occurred to generate the GMCs. Before the second asymmetric division of subsidiary mother cells (SMCs), localized OsSCR expression was observed in SMCs in the area close to the GMCs. Before these asymmetric divisions, the localization of OsSCR mRNA in GMC-forming cells and SMCs was observed in the area of the daughter GMC and subsidiary cells. OsSCR expression was also observed in the initiation area of ligule formation, and its downregulation occurred in the inner L2 cells generated by asymmetric division. Based on these observations, we proposed that OsSCR is involved not only in the asymmetric division of the cortex/endodermis progenitor cell but also during stomata and ligule formation by establishing the polarization of cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号