首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone α subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5′-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.  相似文献   

2.
Retinitis pigmentosa (RP) is the most common form of hereditary retinal degeneration, with a worldwide prevalence of 1 in 4000. Over 30 genes and loci have been implicated in nonsyndromic autosomal-recessive (ar) RP. Genome-wide homozygosity mapping was conducted in two sibships from an extended consanguineous Muslim Arab Israeli family segregating ar severe early-onset RP. A shared homozygous region on chromosome 17q25.3 was identified in both sibships, with an overlap of 4.7 Mb. One of the genes located in this interval is PDE6G, encoding for the inhibitory γ subunit of rod photoreceptor cyclic GMP-phosphodiesterase. Mutations in the genes encoding for the catalytic subunits of this holoenzyme, PDE6A and PDE6B, cause arRP. Sequencing of all coding exons, including exon-intron boundaries, revealed a homozygous single base change (c.187+1G>T) located in the conserved intron 3 donor splice site of PDE6G. This mutation cosegregated with the disease in the extended family. We used an in vitro splicing assay to demonstrate that this mutation leads to incorrect splicing. Affected individuals had markedly constricted visual fields. Both scotopic and photopic electroretinograms were severely reduced or completely extinct. Funduscopy showed typical bone spicule-type pigment deposits spread mainly at the midperiphery, as well as pallor of the optic disk. Macular involvement was indicated by the lack of foveal reflex and typical cystoid macular edema, proved by optical coherence tomography. These findings demonstrate the positive role of the γ subunit in maintaining phosphodiesterase activity and confirm the contribution of PDE6G to the etiology of RP in humans.  相似文献   

3.
Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6cw59 mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6cw59 embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6cw59 mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.  相似文献   

4.
Mutations in the gene coding for AIPL1 cause Leber congenital amaurosis (LCA), a severe form of childhood blindness. The severity in disease is reflected in the complete loss of vision and rapid photoreceptor degeneration in the retinas of mice deficient in AIPL1. Our previous observations suggest that rod photoreceptor degeneration in retinas lacking AIPL1 is due to the massive reduction in levels of rod cGMP phosphodiesterase (PDE6) subunits (α, β, and γ). To date, the crucial link between AIPL1 and the stability of PDE6 subunits is not known. In this study using ex vivo pulse label analysis, we demonstrate that AIPL1 is not involved in the synthesis of PDE6 subunits. However, ex vivo pulse-chase analysis clearly shows that in the absence of AIPL1, rod PDE6 subunits are rapidly degraded by proteasomes. We further demonstrate that this rapid degradation of PDE6 is due to the essential role of AIPL1 in the proper assembly of synthesized individual PDE6 subunits. In addition, using a novel monoclonal antibody generated against AIPL1, we show that the catalytic subunit (α) of PDE6 associates with AIPL1 in retinal extracts. Our studies establish that AIPL1 interacts with the catalytic subunit (α) of PDE6 and is needed for the proper assembly of functional rod PDE6 subunits.  相似文献   

5.
Cyclic GMP-specific phosphodiesterase (3',5'-cyclic-nucleotide 5'-nucleotidohydrolase, EC 1.3.4.17) (PDE) is thought to be a key enzyme of the retinal-rod phototransduction cyclic nucleotide pathway. We attempted to investigate the properties and content of PDE in retinal-cone photoreceptors. The fractions obtained from cone-dominant ground squirrel retinas were analyzed for cone visual pigment content and PDE activity. The cone visual pigment content was estimated to be approx. 65 pmol per retina. The distribution of cone visual pigment coincided with that of the PDE activity through several steps of photoreceptor membrane purification by sucrose density gradient centrifugation. The ground squirrel retinal PDE was similar to the retinal-rod PDE by its kinetic properties, thermostability, sensitivity to tryptic activation, Stokes radius and pI values. The cone visual pigment enriched fractions contained the heat-stable trypsin-inactivated PDE inhibitor. Its functional properties seem to be similar to those of the retinal-rod PDE inhibitory subunit. The PDE content in ground squirrel retina was roughly estimated to be about five copies of enzyme per 100 cone visual pigment molecules. The obtained results indicated that the major portion of ground squirrel retinal cyclic GMP-specific PDE is the endogenous cone photoreceptor membrane enzyme and strongly supported the conception about the key role of PDE in cone phototransduction. The existence of essential differences between rod and cone systems rapidly returning cyclic GMP-specific amplification cascade components to the dark (or inactivated) states after photon absorption was suggested. If this suggestion is true, the well-known distinctions between response kinetics and light sensitivity of these two kinds of photoreceptor can be explained.  相似文献   

6.

Aims/hypothesis

Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia.

Methods

Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor.

Results

PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death.

Conclusions

In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.  相似文献   

7.
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3′,5′-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h−/−) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h−/− retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h−/− mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system.  相似文献   

8.
The present review summarizes the current status of achromatopsia (ACHM) gene therapy‐related research activities and provides an outlook for their clinical application. ACHM is an inherited eye disease characterized by a congenital absence of cone photoreceptor function. As a consequence, ACHM is associated with strongly impaired daylight vision, photophobia, nystagmus and a lack of color discrimination. Currently, six genes have been linked to ACHM. Up to 80% of the patients carry mutations in the genes CNGA3 and CNGB3 encoding the two subunits of the cone cyclic nucleotide‐gated channel. Various animal models of the disease have been established and their characterization has helped to increase our understanding of the pathophysiology associated with ACHM. With the advent of adeno‐associated virus vectors as valuable gene delivery tools for retinal photoreceptors, a number of promising gene supplementation therapy programs have been initiated. In recent years, huge progress has been made towards bringing a curative treatment for ACHM into clinics. The first clinical trials are ongoing or will be launched soon and are expected to contribute important data on the safety and efficacy of ACHM gene supplementation therapy.  相似文献   

9.
Mutations in the photoreceptor cell-specific nuclear receptor gene Nr2e3 increased the number of S-cone photoreceptors in human and murine retinas and led to retinal degeneration that involved photoreceptor and non-photoreceptor cells. The mechanisms underlying these complex phenotypes remain unclear. In the hope of understanding the precise role of Nr2e3 in photoreceptor cell fate determination and differentiation, we generated a line of Nr2e3 knockout zebrafish using CRISPR technology. In these Nr2e3-null animals, rod precursors undergo terminal mitoses but fail to differentiate as rods. Rod-specific genes are not expressed and the outer segment (OS) fails to form. Formation and differentiation of cone photoreceptors is normal. Specifically, there is no increase in the number of UV-cone or S-cone photoreceptors. Laminated retinal structure is maintained. After normal development, L-/M-cones selectively degenerate, with progressive shortening of OS that starts at age 1 month. The amount of cone phototransduction proteins is concomitantly reduced, whereas UV- and S-cones have normal OS lengths even at age 10 months. In vitro studies show Nr2e3 synergizes with Crx and Nrl to enhance rhodopsin gene expression. Nr2e3 does not affect cone opsin expression. Our results extend the knowledge of Nr2e3's roles and have specific implications for the interpretation of the phenotypes observed in human and murine retinas. Furthermore, our model may offer new opportunities in finding treatments for enhanced S-cone syndrome (ESCS) and other retinal degenerative diseases.  相似文献   

10.
Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 β-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6β1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6β1-313. We found that PDE6β1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αβ catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6β protein, PDE6β1-313 and PDE6β1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation.  相似文献   

11.
12.
The inhibitory interaction of phosphodiesterase-6 (PDE6) with its γ-subunit (Pγ) is pivotal in vertebrate phototransduction. Here, crystal structures of a chimaeric PDE5/PDE6 catalytic domain (PDE5/6cd) complexed with sildenafil or 3-isobutyl-1-methylxanthine and the Pγ-inhibitory peptide Pγ70−87 have been determined at 2.9 and 3.0 Å, respectively. These structures show the determinants and the mechanism of the PDE6 inhibition by Pγ and suggest the conformational change of Pγ on transducin activation. Two variable H- and M-loops of PDE5/6cd form a distinct interface that contributes to the Pγ-binding site. This allows the Pγ C-terminus to fit into the opening of the catalytic pocket, blocking cGMP access to the active site. Our analysis suggests that disruption of the H–M loop interface and Pγ-binding site is a molecular cause of retinal degeneration in atrd3 mice. Comparison of the two PDE5/6cd structures shows an overlap between the sildenafil and Pγ70−87-binding sites, thereby providing critical insights into the side effects of PDE5 inhibitors on vision.  相似文献   

13.
14.
Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders.  相似文献   

15.
Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.  相似文献   

16.
Retinal photoreceptors execute phototransduction functions and require an efficient system for the transport of materials (e.g. proteins and lipids) from inner segments to outer segments. Cytoplasmic dynein 1 is a minus-end-directed microtubule motor and participates in cargo transport in the cytoplasm. However, the roles of dynein 1 motor in photoreceptor cargo transport and retinal development are still ambiguous. In our present study, the light intermediate chain protein DLIC1 (encoded by dync1li1), links activating adaptors to bind diverse cargos in the dynein 1 motor, was depleted using CRISPR-Cas9 technology in zebrafish. The dync1li1?/? zebrafish displayed progressive degeneration of retinal cone photoreceptors, especially blue cones. The retinal rods were not affected in dync1li1?/? zebrafish. Knockout of DLIC1 resulted in abnormal expression and localization of cone opsins in dync1li1?/? retinas. TUNEL staining suggested that apoptosis was induced after aberrant accumulation of cone opsins in photoreceptors of dync1li1?/? zebrafish. Instead of Rab11 transport, Rab8 transport was disturbed in dync1li1?/? retinas. Our data demonstrate that DLIC1 is required for function maintenance and survival of cone photoreceptors, and hint at an essential role of the cytoplasmic dynein 1 motor in photoreceptor cargo transport.  相似文献   

17.
18.
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156−2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156−2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.  相似文献   

19.
20.
In mammals, the blockade of the phototransduction cascade causes loss of vision and, in some cases, degeneration of photoreceptors. However, the molecular mechanisms that link phototransduction with photoreceptor degeneration remain to be elucidated. Here, we report that a mutation in the gene encoding a central effector of the phototransduction cascade, cGMP phosphodiesterase 6alpha'-subunit (PDE6alpha'), affects not only the vision but also the survival of cone photoreceptors in zebrafish. We isolated a zebrafish mutant, called eclipse (els), which shows no visual behavior such as optokinetic response (OKR). The cloning of the els mutant gene revealed that a missense mutation occurred in the pde6alpha' gene, resulting in a change in a conserved amino acid. The PDE6 expressed in rod photoreceptors is a heterotetramer comprising two closely related similar hydrolytic alpha and beta subunits and two identical inhibitory gamma subunits, while the PDE6 expressed in cone photoreceptors consists of two homodimers of alpha' subunits, each with gamma subunits. The els mutant displays no visual response to bright light, where cones are active, but shows relatively normal OKR to dim light, where only rods function, suggesting that only the cone-specific phototransduction pathway is disrupted in the els mutant. Furthermore, in the els mutant, cones are selectively eliminated but rods are retained at the adult stage, suggesting that cones undergo a progressive degeneration in the els mutant retinas. Taken together, these data suggest that PDE6alpha' activity is important for the survival of cones in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号