首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.  相似文献   

2.
Kuo LC  Su FC  Chiu HY  Yu CY 《Journal of biomechanics》2002,35(11):1499-1506
While several different methods have been used to measure hand kinematics, fluoroscopy is generally considered to be the most accurate. Recently, video-based motion analysis has been developed for the measurement of joint kinematics. This method is versatile, easy to use, and can measure motions dynamically. Surface markers are most commonly used in the video-based motion systems. However, whether the surface markers placed on the thumb accurately represent the true kinematics of the underlying bony segment is questionable.In this study, the feasibility of surface markers to represent thumb kinematics was investigated by fluoroscopy. Both the positions of surface markers and bony landmarks were simultaneous recorded and then digitized. The Ra(2) values comparing the angular changes of the thumb interphalangeal, metacarpal and carpometacarpal joints derived using the surface markers or bony landmarks were 0.9986, 0.9730 and 0.9186 in the flexion/extension plane respectively, 0.8837, 0.9697 and 0.8775 in the abduction/adduction plane; and 0.9884, 0.9643 and 0.9431 in the opposition plane. The ranges, mean and standard deviation of the absolute differences between calculated angles of different marker sets were also compared. These data revealed that the similarities of the two different marker techniques throughout the motion cycle were high. The differences between the two methods were also within clinically allowable range of +/-5 degrees. It is concluded that the application of the video-based motion analysis system with surface markers to thumb kinematics is warranted.  相似文献   

3.
External rotation of the foot has been implicated in high ankle sprains. Recent studies by this laboratory, and others, have suggested that torsional traction characteristics of the shoe-surface interface may play a role in ankle injury. While ankle injuries most often involve damage to ligaments due to excessive strains, the studies conducted by this laboratory and others have largely used surrogate models of the lower extremity to determine shoe-surface interface characteristics based on torque measures alone. The objective of this study was to develop a methodology that would integrate a motion analysis-based kinematic foot model with a computational model of the ankle to determine dynamic ankle ligament strains during external foot rotation. Six subjects performed single-legged, internal rotation of the body with a planted foot while a marker-based motion analysis was conducted to track the hindfoot motion relative to the tibia. These kinematic data were used to drive an established computational ankle model. Ankle ligament strains, as a function of time, were determined. The anterior tibiofibular ligament (ATiFL) experienced the highest strain at 9.2±1.1%, followed by the anterior deltoid ligament (ADL) at 7.8±0.7%, averaged over the six subjects. The peak ATiFL strain occurred prior to peak strain in the ADL in all subjects. This novel methodology may provide new insights into mechanisms of high ankle sprains and offer a basis for future evaluations of shoe-surface interface characteristics using human subjects rather than mechanical surrogate devices.  相似文献   

4.
Methods based on cutaneous markers are the most popular for the recording of three dimensional scapular motion analysis. Numerous methods have been evaluated, each showing different levels of accuracy and reliability. The aim of this review was to report the metrological properties of 3D scapular kinematic measurements using cutaneous markers and to make recommendations based on metrological evidence.  相似文献   

5.
The most recent non-invasive methods for the recording of scapular motion are based on an acromion marker (AM) set and a single calibration (SC) of the scapula in a resting position. However, this method fails to accurately measure scapular kinematics above 90° of arm elevation, due to soft tissue artifacts of the skin and muscles covering the acromion. The aim of this study was to evaluate the accuracy, and inter-trial and inter-session repeatability of a double calibration method (DC) in comparison with SC. The SC and DC data were measured with an optoelectronic system during arm flexion and abduction at different angles of elevation (0-180°). They were compared with palpation of the scapula using a scapula locator. DC data was not significantly different from palpation for 5/6 axes of rotation tested (Y, X, and Z in abduction and flexion), where as SC showed significant differences for 5/6 axes. The root mean square errors ranged from 2.96° to 4.48° for DC and from 6° to 9.19° for SC. The inter-trial repeatability was good to excellent for SC and DC. The inter-session repeatability was moderate to excellent for SC and moderate to good for DC. Coupling AM and DC is an easy-to-use method, which yields accurate and reliable measurements of scapular kinematics for the complete range of arm motion. It can be applied to the measurement of shoulder motion in many fields (sports, orthopaedics, and rehabilitation), especially when large ranges of arm motion are required.  相似文献   

6.
The aim of this study was to identify kinematic and dynamic variables related to the best tumble turn times (3mRTT, the turn time from 3-m in to 3-m out, independent variable) in ten elite male swimmers using a three-dimensional (3D) underwater analysis protocol and the Lasso (least absolute shrinkage and selection operator) as statistical method. For each swimmer, the best-time turn was analyzed with five stationary and synchronized underwater cameras. The 3D reconstruction was performed using the Direct Linear Transformation algorithm. An underwater piezoelectric 3D force platform completed the set-up to compute dynamic variables. Data were smoothed by the Savitzky-Golay filtering method. Three variables were considered relevant in the best Lasso model (3mRTT=2.58-0.425 RD+0.204 VPe+0.0046 TD): the head-wall distance where rotation starts (RD), the horizontal speed at the force peak (VPe), and the 3D length of the path covered during the turn (TD). Furthermore, bivariate analysis showed that upper body (CUBei) and lower limb extension indexes at first contact (CLLei) were also linked to the turn time (r=-0.65 and p<0.05 for both variables). Thus the best turn times were associated with a long RD, slower VPe and reduced TD. By an early transverse rotation, male elite swimmers reach the wall with a slightly flexed posture that results in fast extension. These swimmers opt for a movement that is oriented forward and they focus on reducing the distance covered.  相似文献   

7.
The purpose of the current research was the comparison of the snatch technique between elite male and female weightlifters. Two S-VHS cameras operating at 60 fields per second were used to record the snatch lifts of 6 male and 6 female Greek weightlifters under competitive conditions. The spatial coordinates of selected points on the body and the barbell were calculated using the direct linear transformation procedure, and the raw data were digitally filtered with a cutoff frequency of 4 Hz. Analyses of variance for dependent and independent samples were used to compare the selected variables in men with the corresponding variables in women. The results revealed that women flexed their knees significantly less and slower than men did during the transition phase (p < 0.05). Women also dropped under the barbell during the turnover and catch phases significantly less and slower than men did (p < 0.05). Moreover, the external mechanical work for the vertical displacement of the barbell in men was significantly greater in the first pull than in the second pull (p < 0.05). In contrast, women showed similar work outputs in the 2 phases. These differences between the 2 sexes might be because of the lower skill level of women in comparison with men, which is partly because of the recent participation of women in weightlifting.  相似文献   

8.
The validation of two noninvasive methods for measuring the dynamic three-dimensional kinematics of the human scapula with a magnetic tracking device is presented. One method consists of simply fixing a sensor directly to the acromion and the other consists of mounting a sensor to an adjustable plastic jig that fits over the scapular spine and acromion. The concurrent validity of both methods was assessed separately by comparison with data collected simultaneously from an invasive approach in which pins were drilled directly into the scapula. The differences between bone and skin based measurements represents an estimation of skin motion artifact. The average motion pattern of each surface method was similar to that measured by the invasive technique, especially below 120 degrees of elevation. These results indicate that with careful consideration, both methods may offer reasonably accurate representations of scapular motion that may be used to study shoulder pathologies and help develop computational models.  相似文献   

9.
The purpose of this study was to analyze and compare the kinetic and kinematic characteristics of the throwing technique, Harai-goshi of novice and advanced judo competitors. A heterogeneous group of 28 male and female judo competitors participated in this study. Each subject was required to perform three successful trials. Kinetic and kinematic data were collected by utilizing the Kistler Instrument Corporation Multicomponent Force Measuring Platform System and the Peak Technologies Motion Video Analysis System. Data were collected in order to quantitatively and qualitatively analyze the horizontal and vertical forces of the support leg, and the horizontal and vertical velocities of the sweeping leg during execution of the throwing technique, Harai-goshi (hip sweep). The study revealed a significant difference in horizontal force application, between novice and advanced judo competitors. In addition, we found numerous significant relationships among mean horizontal ground reaction force application and horizontal leg sweep velocity in 19 of the 28 participants when analyzed individually. The results suggest (1) leg sweep velocity is a function of ground reaction force application; and (2) horizontal leg sweep velocity plays a primary role in good technical execution of the Harai-goshi throw.  相似文献   

10.
11.
There is a lack of studies of 3D scapular kinematic patterns for patients with shoulder conditions comparing affected and contralateral nonaffected shoulders during self-care activities of daily living (ADL). In this study, we compared 48 patients - 11 with glenohumeral osteoarthritis (GHOA), 20 with frozen shoulder (FS) and 17 with rotator cuff tendinopathies (RCT) - as they performed two ADL: hair combing and back washing. 3D scapular rotations and humerothoracic elevation (HTE) of the affected and contralateral nonaffected shoulders were recorded with use of a 6 degrees-of-freedom electromagnetic device. The HTE of affected and nonaffected shoulders were compared for each pathology group at rest and at the HTE used to perform the ADL: 30°, 45° and 60° of HTE for hair combing, and 30° of HT elevation for back washing. For hair combing, mean peak HTE was significantly lower for affected than nonaffected shoulders. Mean scapular lateral rotation was significantly greater at each HTE degree for GHOA and RCT groups, and mean scapular posterior tilt was significantly lower at 30° of HTE for the FS group. For back washing, mean peak HTE was lower for affected than nonaffected shoulders for the FS group only. Mean scapular medial rotation was significantly lower at 30° of HTE for the RCT group. 3D scapular kinematics appear to be specific to the shoulder pathology and to the task studied. Specific scapular kinematic patterns must be considered for appropriate therapeutic management.  相似文献   

12.
13.
The purpose of this study was to investigate the effects of increased barbell loads on barbell and body kinematics of the snatch lifts at 60, 80, and 100% of 1 repetition maximum and to evaluate the biomechanics of snatch technique. The study was performed on 7 elite male weightlifters of the Turkish national team. Four cameras operating at 50 fields per second were used to record the lifts. For 3D kinematic analysis of center of gravity (CG) and barbell movement, the points on the body and the barbell were digitized by using an Ariel Performance Analysis System. There were significant differences between the vertical work values (p < 0.05). The power values of the 3 snatch lifts were also found to be significantly different (p < 0.05). Another significant difference (p < 0.05) was observed between maximum vertical displacement of the barbell, maximum vertical velocity of the barbell, maximum vertical displacement of CG, the vertical velocity of CG during the turnover under the barbell. The results demonstrated that vertical and horizontal kinematics of the barbell and body decreased at the pull phase of the snatch technique as the barbell load increased. The power output during the second pull increased although the work done did not change, whereas work and power output increased during the first pull phase depending on the increase in the barbell weight. The finding of this study suggested that weightlifters had to perform the turnover under the barbell and the catch phase faster, because when the barbell weight was increased at snatch lift, vertical kinematics of the barbell decreased.  相似文献   

14.
This study demonstrates the validity of using 3-D video motion analysis to measure hand motion. Several researchers have devised ingenious methods to study normal and abnormal hand movements. Although very helpful, these earlier studies are static representations of a dynamic phenomenon. Despite the many studies of hand motion using scientifically impeccable techniques, little is known about digital motion, and there are still few researchers investigating dynamic three-dimensional motion of the hand. Results from a three-camera video motion analysis system were compared to those from the "gold standard", 2-D lateral view fluoroscopy. We used these two methods to record hand motion simultaneously during unrestricted flexion and extension of the index finger of the dominant hand in 6 neurologically normal, healthy volunteers. After collection and post-processing, the waveforms of the PIP, DIP and MCP joint angles were compared using the adjusted coefficient of multiple determination (R2(a), or CMD). The mean CMD values for the MCP, PIP and DIP joint angle waveforms were 0.96, 0.98 and 0.94, respectively, suggesting a close similarity between motion of comparable joints analyzed by the 2-D and 3-D methods. This shows that the method of 3-D motion analysis is capable of accurately quantifying digital joint motion. It is anticipated that 3-D motion analysis, in addition to being used as a research tool, will also have clinical applications such as surgical planning in neuromuscular disorders and the documentation of abnormal motion in many other pathological hand conditions.  相似文献   

15.
The internal reference technique (IRT) was compared with the no net flux method (NFM) as a microdialysis calibration technique for sampling of interstitial histamine in the rat. Microdialysis catheters (polyacrylonitrile, 50 kD cut off) were inserted in liver, muscle, subcutaneous tissue and in an induced adenocarcinoma. Estimated relative recovery with IRT ranged from 23+/-2% in liver to 30+/-3% in subcutaneous tissue with and without tumor (p<0.05). By using the NFM-technique we found similar recovery as compared to the IRT in all tissues studied. Interstitial histamine was up to 3-fold higher than the mean plasma histamine concentration (54+/-2 nmol/l). Subcutaneous tissue (177+/-39 nmol/l) and subcutaneous tumor (165+/-29 nmol/l) exhibited high histamine while liver (65+/-14 nmol/l) and liver tumor (75+/-7 nmol/l) had low interstitial histamine concentrations. In conclusion, the IRT was validated against the NFM as a rapid method for histamine measurements in situ in the rat.  相似文献   

16.
Ventzki R  Rüggeberg S  Leicht S  Franz T  Stegemann J 《BioTechniques》2007,42(3):271, 273, 275 passim
Two-dimensional gel electrophoresis (2-DE) separation has not been considered suitable for large-scale comparative protein expression studies due to its limited throughput. We present a high-throughput analysis method based on three-dimensional (3-D) geometry gel electrophoresis. Following conventional isoelectric focusing (IEF), up to 36 immobilized pH gradient (IPG) strips are arrayed on the top surface of a 3-D gel body, and the samples transferred electrokinetically to the gel. A specific thermal management ensures that sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) occurs under identical electrophoretic and thermal conditions, avoiding gel-to-gel variations and thereby providing immediate comparability of the separation patterns. Proteins are Cy3-labeled for online detection of laser-induced fluorescence (LIF). Images are acquired by a digital camera and recorded as a 3-D image stack during electrophoresis. Image processing software decomposes the 3-D image stack into vertical sections representing conventional 2-DE slab gels, making results immediately accessible without further gel processing. The large number of simultaneously analyzed samples (n = 36) allows treating the sample index as a quasi-continuous experimental parameter (e.g., concentration, time, dose). The method offers a wide range of applications in molecular discovery, clinical diagnosis, pharmacology, and toxicology, like protein monitoring during disease development and screening of drug candidates for their effect on protein expression.  相似文献   

17.
The ability to analyze human movement is an essential tool of biomechanical analysis for both sport and clinical applications. Traditional 3D motion capture technology limits the feasibility of large scale data collections and therefore the ability to address clinical questions. Ideally, the measurement system/protocol should be non-invasive, mobile, generate nearly instantaneous feedback to the clinician and athlete, and be relatively inexpensive. The retro-grate reflector (RGR) is a new technology that allows for three-dimensional motion capture using a single camera. Previous studies have shown that orientation and position information recorded by the RGR system has high measurement precision and is strongly correlated with a traditional multi-camera system across a series of static poses. The technology has since been refined to record moving pose information from multiple RGR targets at sampling rates adequate for assessment of athletic movements. The purpose of this study was to compare motion data for a standard athletic movement recorded simultaneously with the RGR and multi-camera (Motion Analysis Eagle) systems. Nine subjects performed three single-leg land-and-cut maneuvers. Thigh and shank three-dimensional kinematics were collected with the RGR and Eagle camera systems simultaneously at 100 Hz. Results showed a strong agreement between the two systems in all three planes, which demonstrates the ability of the RGR system to record moving pose information from multiple RGR targets at a sampling rate adequate for assessment of human movement and supports the ability to use the RGR technology as a valid 3D motion capture system.  相似文献   

18.
The aim of this study was to investigate the stress distribution in a 3-D model of two-rooted tooth (first maxillary premolar) under two different occlusal force vectors by using finite element analysis. In the first model overall force of 200 N was divided into three vectors (cusp to fossa occlusion), and in the second model overall force was divided into 4 vectors (cusp to fossa and cusp to marginal ridge occlusion). The greatest compressive stress was found at the dentino- enamel junction in the cervical area of the both models (about -200 MPa). The greatest tensile stress was found at the vestibular aspect of buccal cusp in second model (about +3 MPa) and in the central fossa of the both models (about +28 MPa). Results indicate that in the both types of occlusal loadings the stress distribution was mainly compression and compressive forces were predominant over tensile stresses. In the second model with 4 vectors, stresses generated in the tooth structure were higher compared to the stresses generated in the first model with 3 vectors.  相似文献   

19.
20.
Gibbons are highly arboreal apes, and it is expected that their bipedal locomotion will show some particularities related to the arboreal environment. Previous research has shown that, during hylobatid bipedalism, unsupported phases are rare and stride frequencies are relatively low. This study confirms previous findings, and we suggest that low stride frequencies and the absence of unsupported phases are ways to reduce disadvantageous branch oscillations during arboreal travel. Despite these restrictions, gibbons are able to locomote at a wide range of speeds, implying that they likely exploit other mechanisms to modulate their locomotor speed. To investigate this possibility, we collected video images of a large number of spontaneous bipedal bouts of four untrained white-handed gibbons by using an instrumented walkway with four synchronized cameras. These video images were digitized to obtain a quantification of the 3D kinematics of hylobatid bipedalism. We defined a large number of spatiotemporal and kinematic gait variables, and the relationship between these gait variables and (dimensionless) speed was statistically tested. It was found that gibbons mainly increase stride length to increase their locomotor speed; the main speed-modulating mechanisms are hip and ankle excursion and coupled knee and ankle extension at toe-off. Although aerial phases are rare, gibbons generally adopt a bipedal bouncing gait at most speeds and a clear-cut gait transition, as seen in human locomotion, is absent. Comparison with human and bonobo bipedalism showed that the variability of the 3D joint angles of the hind limb are comparable during human and gibbon bipedalism, and much lower than during bonobo bipedalism. The low variability found in gibbons might be related to constraints imposed by the arboreal environment. These arboreal constraints clearly affect the bipedal gait characteristics of gibbons, but do not constrain the ability to adopt a bipedal bouncing gait during terrestrial locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号