首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Sunkar R  Zhu JK 《The Plant cell》2004,16(8):2001-2019
MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.  相似文献   

2.
MicroRNAs and other tiny endogenous RNAs in C. elegans   总被引:8,自引:0,他引:8  
  相似文献   

3.
Small RNAs, including miRNAs, siRNAs, and PIWI-interacting RNAs (piRNAs), are small noncoding RNAs that are 21-30 nucleotides in length and play important roles...  相似文献   

4.
病毒microRNA研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类存在于多细胞生物中长约21-24nt的非编码RNA分子,它们与靶mRNA分子互补结合抑制蛋白翻译或导致mRNA降解,从而调控靶基因表达。miRNA已被证实在多种代谢途径中发挥重要作用,调节包括细胞分化和分裂、细胞凋亡及癌症发生在内的多个细胞过程。利用生物信息学以及分子克隆的方法在线虫、哺乳动物以及植物中已发现超过4000条miRNA。最近在病毒中也发现有miRNA基因存在,通过对病毒miRNA靶基因的预测,推测其在病毒复制过程中发挥重要的调控作用。目前病毒编码的miRNA分子的特点、转录机制、功能、进化保守性以及病毒与宿主miRNA的关系都已有一定的了解。对于病毒相关miRNA研究的深入,必将对认识病毒-宿主相互作用以及相关疾病的治疗带来新的启示。  相似文献   

5.
6.
Gene silencing using micro-RNA designed hairpins   总被引:22,自引:2,他引:20       下载免费PDF全文
During RNA interference (RNAi), long dsRNA is processed to approximately 21 nt duplexes, short interfering RNAs (siRNAs), which silence genes through a mRNA degradation pathway. Small temporal RNAs (stRNAs) and micro-RNAs (miRNAs) are approximately 21 nt RNAs that are processed from endogenously encoded hairpin-structured precursors, and function to silence genes via translational repression. Here we report that synthetic hairpin RNAs that mimic siRNAs and miRNA precursor molecules can target a gene for silencing, and the mechanism of silencing appears to be through mRNA degradation and not translational repression. The sequence and structural configuration of these RNAs are important, and even slight modification in structure can affect the silencing activity of the hairpins. Furthermore, these RNAs are active when expressed by DNA vectors containing polymerase III promoters, opening the possibility for new approaches in stable RNAi-based loss of function studies.  相似文献   

7.
microPrimer: the biogenesis and function of microRNA   总被引:42,自引:0,他引:42  
Discovered in nematodes in 1993, microRNAs (miRNAs) are non-coding RNAs that are related to small interfering RNAs (siRNAs), the small RNAs that guide RNA interference (RNAi). miRNAs sculpt gene expression profiles during plant and animal development. In fact, miRNAs may regulate as many as one-third of human genes. miRNAs are found only in plants and animals, and in the viruses that infect them. miRNAs function very much like siRNAs, but these two types of small RNAs can be distinguished by their distinct pathways for maturation and by the logic by which they regulate gene expression.  相似文献   

8.
Ni MJ  Hu ZH  Liu Q  Liu MF  Lu MH  Zhang JS  Zhang L  Zhang YL 《PloS one》2011,6(10):e26053
A long and ever-expanding roster of small (~20-30 nucleotides) RNAs has emerged during the last decade, and most can be subsumed under the three main headings of microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and short interfering RNAs (siRNAs). Among the three categories, miRNAs is the most quickly expanded group. The most recent number of identified miRNAs is 16,772 (Sanger miRbase, April 2011). However, there are insufficient publications on their primary forms, and no tissue-specific small RNAs precursors have been reported in the epididymis. Here, we report the identification in rats of an epididymis-specific, chimeric, noncoding RNA that is spliced from two different chromosomes (chromosomes 5 and 19), which we named HongrES2. HongrES2 is a 1.6 kb mRNA-like precursor that gives rise to a new microRNA-like small RNA (mil-HongrES2) in rat epididymis. The generation of mil-HongrES2 is stimulated during epididymitis. An epididymis-specific carboxylesterase named CES7 had 100% cDNA sequence homology at the 3'end with HongrES2 and its protein product could be downregulated by HongrES2 via mil-HongrES2. This was confirmed in vivo by initiating mil-HongrES2 over-expression in rats and observing an effect on sperm capacitation.  相似文献   

9.
10.
MicroRNAs (miRNAs) are small, noncoding regulatory RNA molecules that bind to 3' untranslated regions (UTRs) of mRNAs to either prevent their translation or induce their degradation. Previously identified in a variety of organisms ranging from plants to mammals, miRNAs are also now known to be produced by viruses. The human gammaherpesvirus Epstein-Barr virus has been shown to encode miRNAs, which potentially regulate both viral and cellular genes. To determine whether Kaposi's sarcoma-associated herpesvirus (KSHV) encodes miRNAs, we cloned small RNAs from KSHV-positive primary effusion lymphoma-derived cells and endothelial cells. Sequence analysis revealed 11 isolated RNAs of 19 to 23 bases in length that perfectly align with KSHV. Surprisingly, all candidate miRNAs mapped to a single genomic locale within the latency-associated region of KSHV. These data suggest that viral and host cellular gene expression may be regulated by miRNAs during both latent and lytic KSHV replication.  相似文献   

11.
In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.  相似文献   

12.
Sorting of Drosophila small silencing RNAs   总被引:3,自引:0,他引:3  
Tomari Y  Du T  Zamore PD 《Cell》2007,130(2):299-308
In Drosophila, small interfering RNAs (siRNAs), which direct RNA interference through the Argonaute protein Ago2, are produced by a biogenesis pathway distinct from microRNAs (miRNAs), which regulate endogenous mRNA expression as guides for Ago1. Here, we report that siRNAs and miRNAs are sorted into Ago1 and Ago2 by pathways independent from the processes that produce these two classes of small RNAs. Such small-RNA sorting reflects the structure of the double-stranded assembly intermediates--the miRNA/miRNA( *) and siRNA duplexes--from which Argonaute proteins are loaded. We find that the Dcr-2/R2D2 heterodimer acts as a gatekeeper for the assembly of Ago2 complexes, promoting the incorporation of siRNAs and disfavoring miRNAs as loading substrates for Drosophila Ago2. A separate mechanism acts in parallel to favor miRNA/miRNA( *) duplexes and exclude siRNAs from assembly into Ago1 complexes. Thus, in flies small-RNA duplexes are actively sorted into Argonaute-containing complexes according to their intrinsic structures.  相似文献   

13.
The gene organization of small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) varies within and among different organisms. This diversity is reflected in the maturation pathways of these small noncoding RNAs (ncRNAs). The presence of noncoding RNAs in introns has implications for the biogenesis of both mature small RNAs and host mRNA. The balance of the interactions between the processing or ribonucleoprotein assembly of intronic noncoding RNAs and the splicing process can regulate the levels of ncRNA and host mRNA. The processing of snoRNAs - both intronic and non-intronic - is well characterised in yeast, plants and animals and provides a basis for examining how intronic plant miRNAs are processed.  相似文献   

14.
MicroRNAs (miRNAs), small interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs) impact numerous biological processes in eukaryotes. In addition to biogenesis, turnover contributes to the steady-state levels of small RNAs. One major factor that stabilizes miRNAs and siRNAs in plants as well as siRNAs and piRNAs in animals is 2'-O-methylation on the 3' terminal ribose by the methyltransferase HUA ENHANCER1 (HEN1) [1-6]. Genetic studies with Arabidopsis, Drosophila, and zebrafish hen1 mutants show that 2'-O-methylation protects small RNAs from 3'-to-5' truncation and 3' uridylation, the addition of nontemplated nucleotides, predominantly uridine [2, 7, 8]. Uridylation is a widespread phenomenon that is not restricted to small RNAs in hen1 mutants and is often associated with their reduced accumulation ([7, 9, 10]; reviewed in [11]). The enzymes responsible for 3' uridylation of small RNAs when they lack methylation in plants or animals have remained elusive. Here, we identify the Arabidopsis HEN1 SUPPRESSOR1 (HESO1) gene as responsible for small RNA uridylation in hen1 mutants. HESO1 exhibits terminal nucleotidyl transferase activity, prefers uridine as the substrate nucleotide, and is completely inhibited by 2'-O-methylation. We show that uridylation leads to miRNA degradation, and the degradation is most likely through an enzyme that is distinct from that causing the 3' truncation in hen1 mutants.  相似文献   

15.
Liu B  Li P  Li X  Liu C  Cao S  Chu C  Cao X 《Plant physiology》2005,139(1):296-305
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two types of noncoding RNAs involved in developmental regulation, genome maintenance, and defense in eukaryotes. The activity of Dicer or Dicer-like (DCL) proteins is required for the maturation of miRNAs and siRNAs. In this study, we cloned and sequenced 66 candidate rice (Oryza sativa) miRNAs out of 1,650 small RNA sequences (19 to approximately 25 nt), and they could be further grouped into 21 families, 12 of which are newly identified and three of which, OsmiR528, OsmiR529, and OsmiR530, have been confirmed by northern blot. To study the function of rice DCL proteins (OsDCLs) in the biogenesis of miRNAs and siRNAs, we searched genome databases and identified four OsDCLs. An RNA interference approach was applied to knock down two OsDCLs, OsDCL1 and OsDCL4, respectively. Strong loss of function of OsDCL1IR transformants that expressed inverted repeats of OsDCL1 resulted in developmental arrest at the seedling stage, and weak loss of function of OsDCL1IR transformants caused pleiotropic developmental defects. Moreover, all miRNAs tested were greatly reduced in OsDCL1IR but not OsDCL4IR transformants, indicating that OsDCL1 plays a critical role in miRNA processing in rice. In contrast, the production of siRNA from transgenic inverted repeats and endogenous CentO regions were not affected in either OsDCL1IR or OsDCL4IR transformants, suggesting that the production of miRNAs and siRNAs is via distinct OsDCLs.  相似文献   

16.
Molecular imaging was used to study the biodistribution, pharmacokinetics, and activity of naked small interfering RNAs (siRNAs). siRNAs with riboses chemically modified in the 2' position were compared with unmodified siRNA. In vitro, replacement of the 2'-hydroxyl (2'OH) group of certain nucleotides in an siRNA sequence by a fluorine atom (2'F) on both antisense (AS) and sense (S) strands [2'F(AS/S)], or by a methoxy group (2'OMe) on the S strand [2'OH(AS)/2'OMe(S)], was compatible with RNA interference. Different siRNAs [2'F(AS/S), 2'OH(AS)/2'OMe(S), and 2'OH(AS/S)] were labeled with fluorine-18 (conjugation with [(18)F]FPyBrA), and comparative dynamic and quantitative imaging was performed with positron emission tomography. After intravenous injections of [(18)F]siRNAs in rodents, total radioactivity was rapidly eliminated by the kidneys and the liver. Tissue distribution of the different siRNAs were similar, and their bioavailability (as judged from blood persistence and stability) increased in the order 2'OH(AS/S) = 2'OH(AS)/2'OMe(S) < 2'F(AS/S). However, in our in vivo model, the 2'F(AS/S) siRNA, despite its higher bioavailability, was not able to induce a higher interference effect with respect to the 2'OH(AS/S) siRNA. Molecular imaging approaches, applied in the present work to both natural and chemically modified siRNAs, can contribute to the development of these macromolecules as therapeutic agents.  相似文献   

17.
Endogenous small RNAs and antibacterial immunity in plants   总被引:2,自引:0,他引:2  
Jin H 《FEBS letters》2008,582(18):2679-2684
  相似文献   

18.
19.
MicroRNAs and cell differentiation in mammalian development   总被引:8,自引:0,他引:8  
MicroRNAs (miRNAs) are a group of recently discovered small RNAs produced by the cell using a unique process, involving RNA polymerase II, Microprocessor protein complex, and the RNAase III/Dicer endonuclease complex, and subsequently sequestered in an miRNA ribonucleoprotein complex. The biological functions of miRNAs depend on their ability to silence gene expression, primarily via degradation of the target mRNA and/or translational suppression, mediated by the RNA-induced silencing complex (RISC). First discovered in Caenorhabditis elegans (lin-4), miRNAs have now been identified in a wide array of organisms, including plants, zebrafish, Drosophila, and mammals. The expression of miRNAs in multicellular organisms exhibits spatiotemporal, and tissue- and cell-specificity, suggesting their involvement in tissue morphogenesis and cell differentiation. More than 200 miRNAs have been identified or predicted in mammalian cells. Recent studies have demonstrated the importance of miRNAs in embryonic stem cell differentiation, limb development, adipogenesis, myogenesis, angiogenesis and hematopoiesis, neurogenesis, and epithelial morphogenesis. Overexpression (gain-of-function) and inactivation (loss-of-function) are currently the primary approaches to studying miRNA functions. Another family of small RNAs related to miRNAs is the small interfering RNAs (siRNAs), generated by Dicer from long double-stranded RNAs (dsRNAs), and produced from an induced transgene, a viral intruder, or a rogue genetic element. siRNAs silence genes via either mRNA degradation, using the RISC, or DNA methylation. siRNAs are actively being applied in basic, functional genetic studies, particularly in the generation of gene knockdown animals, as well as in gene knockdown studies of cultured cells. These studies have provided invaluable information on the specific function(s) of individual genes. siRNA technology also presents exciting potential as a therapeutic approach in disease prevention and treatment, as suggested by a recent study targeting apolipoprotein B (ApoB) in primates. Further elucidation of how miRNAs and other small RNAs interact with known and yet-to-be identified gene regulatory pathways in the cell should provide us with a more in-depth understanding of the mechanisms regulating cellular function and differentiation, and facilitate the application of small RNA technology in disease control and treatment.  相似文献   

20.
Li J  Yang Z  Yu B  Liu J  Chen X 《Current biology : CB》2005,15(16):1501-1507
Small RNAs of 21-25 nucleotides (nt), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), act as guide RNAs to silence target-gene expression in a sequence-specific manner. In addition to a Dicer homolog, DCL1, the biogenesis of miRNAs in Arabidopsis requires another protein, HEN1. miRNAs are reduced in abundance and increased in size in hen1 mutants. We found that HEN1 is a miRNA methyltransferase that adds a methyl group to the 3'-most nucleotide of miRNAs, but the role of miRNA methylation was unknown. Here, we show that siRNAs from sense transgenes, hairpin transgenes, and transposons or repeat sequences, as well as a new class of siRNAs known as trans-acting siRNAs, are also methylated in vivo by HEN1. In addition, we show that the size increase of small RNAs in the hen1-1 mutant is due to the addition of one to five U residues to the 3' ends of the small RNAs. Therefore, a novel uridylation activity targets the 3' ends of unmethylated miRNAs and siRNAs in hen1 mutants. We conclude that 3'-end methylation is a common step in miRNA and siRNA metabolism and likely protects the 3' ends of the small RNAs from the uridylation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号