共查询到20条相似文献,搜索用时 15 毫秒
1.
Elodie Renvoisé Alistair R. Evans Ahmad Jebrane Catherine Labruère Rémi Laffont Sophie Montuire 《Evolution; international journal of organic evolution》2009,63(5):1327-1340
The study of mammalian evolution is often based on insights into the evolution of teeth. Developmental studies may attempt to address the mechanisms that guide evolutionary changes. One example is the new developmental model proposed by Kavanagh et al. (2007) , which provides a high-level testable model to predict mammalian tooth evolution. It is constructed on an inhibitory cascade model based on a dynamic balance of activators and inhibitors, regulating differences in molar size along the lower dental row. Nevertheless, molar sizes in some mammals differ from this inhibitory cascade model, in particular in voles. The aim of this study is to point out arvicoline and murine differences within this model and to suggest an alternative model. Here we demonstrate that the inhibitory cascade is not followed, due to the arvicoline's greatly elongated first lower molar. We broaden the scope of the macroevolutionary model by projecting a time scale onto the developmental model. We demonstrate that arvicoline evolution is rather characterized by a large gap from the oldest vole to more recent genera, with the rapid acquisition of a large first lower molar contemporaneous to their radiation. Our study provides alternative evolutionary hypotheses for mammals with different trajectories of development. 相似文献
2.
Estimation of the dietary habits of extinct species using morphological traits has been attempted in numerous studies; however, previous methods have encountered several difficulties, such as requiring specialized equipment. In this study, we describe an easy quantitative method for estimating the dietary habits, and apply it to extinct raccoon dogs (Nyctereutes) species (Carnivora, Mammalia). The method is based on the lower molar ratios (M2/M1 size) that reflect the species diet (carnivorous and omnivorous tendencies) in Canidae. Among the species statistically compared, Nyctereutes sinensis showed a lower M2/M1 score similar to that of Nyctereutes procyonoides albus (Hokkaido, Japan), whereas Nyctereutes tingi had a higher M2/M1 score similar to that of Nyctereutes procyonoides viverrinus (Honshu and Kyushu, Japan). These scores suggest that the diets of N. sinensis and N. tingi were similar to those of N. p. albus (relatively carnivorous) and N. p. viverrinus (relatively omnivorous), respectively. Other extinct raccoon dogs also showed varied M2/M1 score, suggesting dietary difference. These results suggest that raccoon dogs underwent dietary transitions or exhibited dietary plasticity during evolution, while their range of diets might have remained the same as those of different populations of extant species Nyctereutes procyonoides. 相似文献
3.
Borja Figueirido Francisco J. Serrano Alejandro Prez-Ramos Juan Miguel Esteban Humberto G. Ferrn Alberto Martín-Serra 《Biology letters》2022,18(4)
Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence. 相似文献
4.
5.
Upper-to-lower limb proportions of Homo habilis are often said to be more ape-like than those of its reputed ancestor, Australopithecus afarensis. Such proportions would either imply multiple evolutionary reversals or parallel development of a relatively short upper limb in A. afarensis and later Homo. However, assessments of limb proportions are complicated by the fragmentary nature of the two known H. habilis skeletons, OH 62 and KNM-ER 3735. Initially, KNM-ER 3735 was compared to A.L. 288-1 (A. afarensis) using a single modern human and chimpanzee as reference. Here, based on a larger comparative sample, we find that the relative size of the distal humerus, radial head, and shaft of both KNM-ER 3735 and A.L. 288-1 lie within the range of variation of modern humans, whereas their sacra are small as is the case for all early hominids. In addition, their manual phalanges are similar in having a gracile base but robust midshaft. Contrary to earlier studies, the fossils are not differentiable from each other statistically with respect to all features listed above. On the other hand, they differ in robusticity of the scapular spine and relative length of the radial neck. An exact randomization test suggests only a very low probability of finding a similar degree of difference within a single species of extant hominoids. In contrast to the consensus view, we conclude that A.L. 288-1 had a short, human-like forearm, whereas KNM-ER 3735 possessed a distinctly longer forearm and more powerful shoulder girdle. This interpretation fits with earlier conclusions that suggested human-like humerofemoral proportions but chimpanzee-like brachial proportions for Homo habilis. Thus, the scenario of a unidirectional, progressive change in limb proportions within the hominid lineage is not supported by our work. 相似文献
6.
Stefano Benazzi Shara E. Bailey Francesco Mallegni 《American journal of physical anthropology》2013,152(2):300-305
The scarcity of Neandertal remains from Southern Europe hampers our understanding of Neandertal variability, and can bias interpretations about Neandertal geographic variation. To address this issue, it is often important to reassess human remains that, while discovered decades ago, remain relatively unknown to the scientific community. In this contribution, we provide a complete state‐of‐the‐art comparative morphometric analysis of Leuca I, an unworn left second upper molar (LM2) discovered in 1958 in Bambino's Cave (near Santa Maria di Leuca, Apulia, Italy) and attributed to Homo neanderthalensis. Our study includes comparisons of standard metric and nonmetric data, a 2D image analysis of the occlusal surface and measurements of both 2D and 3D enamel thickness and dental tissue proportions. Although Leuca I follows the Neandertal M2s trend in some morphometric aspects (i.e., small relative occlusal polygon area), in other cases it falls to the higher end (for 3D average enamel thickness) or even outside (for 3D‐relative enamel thickness) the Neandertal M2 variability, thus increasing the known Neandertal range of variation. Am J Phys Anthropol 152:300–305, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
7.
8.
In this issue of Molecular Ecology, Yamasaki et al. (2020) use genetic data from extensive sampling of Rhinogobius goby fish across the Ryukyu Archipelago in Japan to demonstrate the parallel speciation of a freshwater form from an ancestral amphidromous form. They then show that ecosystem size strongly predicts the probability of speciation between the two forms across islands. In doing so, this study connects population‐level processes (microevolution) to broad‐scale biodiversity patterns (macroevolution), an important but understudied link in evolutionary biology. Moving forward, we can build on this research to (a) more directly determine how geographic, ecological and historical factors influence the different stages of the speciation process, and (b) understand whether mechanisms inferred from insular radiations extend to those on continents, where both demographic histories and environmental regimes are likely more complex. 相似文献
9.
Jaap J. Beintema 《Journal of molecular evolution》1977,9(4):363-366
Summary Investigation of 7 insulin sequences from a bony fish, a bird, and 5 mammalian species showed that guinea pig and coypu insulin, that have a strongly divergent primary and quarternary structure, are not the result of gene duplication in an ancient vertebrate or invertebrate ancestor but that they diverged from the other mammals after divergence of the mammals from the other vertebrates. After this divergence both insulins underwent evolution at a highly increased rate. 相似文献
10.
Alexandra C. N. Kingston Julia D. Sigwart Daniel R. Chappell Daniel I. Speiser 《Acta zoologica》2020,101(3):242-246
Teratological specimens deviate from the conserved form of their species. In doing so, they serve as natural experiments that refine our knowledge of developmental mechanisms and the natural limits of phenotypes. Here, we describe a specimen of the West Indian Fuzzy Chiton Acanthopleura granulata (Gmelin, 1791) with a fifth valve split into two halves. Using micro-CT to non-invasively visualize the external and internal morphology of this specimen, we find that the half valves are symmetrical and independent from each other and from any of the other valves. The presence of girdle-like tissue between the split valves suggests that this shell abnormality arose in early development and was not the product of damage to the adult animal. While the present specimen of A. granulata is clearly abnormal for its species, its split valve may provide some insights into the developmental pathways that would underlie macroevolutionary transitions to multi-plated chiton forms known from the fossil record. 相似文献
11.
Breed WG 《Journal of morphology》2005,265(3):271-290
In the rodent superfamily Muroidea, a model for the evolution of sperm form has been proposed in which it is suggested that a hook-shaped sperm head and long tail evolved from a more simple, nonhooked head and short tail in several different subfamilies. To test this model the shape of the sperm head, with particular emphasis on its apical region, and length of sperm tail were matched to a recent phylogeny based on the nucleotide sequence of several protein-coding nuclear genes from 3 families and 10 subfamilies of muroid rodents. Data from the two other myomorph superfamilies, the Dipodoidea and kangaroo rats in the Geomyoidea, were used for an outgroup comparison. In most species in all 10 muroid subfamilies, apart from in the Murinae, the sperm head has a long rostral hook largely composed of acrosomal material, although its length and cross-sectional shape vary across the various subfamilies. Nevertheless, in a few species of various lineages a very different sperm morphology occurs in which an apical hook is lacking. In the outgroups the three species of dipodid rodents have a sperm head that lacks a hook, whereas in the heteromyids an acrosome-containing apical hook is present. It is concluded that, as the hook-shaped sperm head and long sperm tail occur across the muroid subfamilies, as well as in the heteromyid rodents, it is likely to be the ancestral condition within each of the subfamilies with the various forms of nonhooked sperm heads, that are sometimes associated with short tails, being highly derived states. These findings thus argue against a repeated evolution in various muroid lineages of a complex, hook-shaped sperm head and long sperm tail from a more simple, nonhooked sperm head and short tail. An alternative proposal for the evolution of sperm form within the Muroidea is presented in the light of these data. 相似文献
12.
Hallie J. Sims 《Evolution; international journal of organic evolution》2013,67(5):1338-1346
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life‐history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per‐clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges. 相似文献
13.
Dental Morphology of the Jurassic Holotherian Mammal Amphitherium, with a Discussion of the Evolution of Mammalian Post-Canine Dental Formulae 总被引:1,自引:0,他引:1
Four fragmentary mandibles from the Stonesfield Slate facies, Taynton Limestone Formation, Middle Bathonian (Middle Jurassic), England, represent two species of Amphitherium A. prevostii A. rixoni sp. nov. Both species had five lower premolariform teeth. The composite formula for the lower dentition of Amphitherium appears to have been I/4, C/1, P/5, M/6–7. The seventh molar is not present in the presumably oldest individual, and its presence is regarded as probably an individual variation. The mosaic evolution of patterns of differentiation of the postcanine dentition from nonmammalian cynodonts to modern therian mammals is reviewed. It is concluded that Amphitherium probably had reached the grade of modern therians in the division between diphyodont premolars and monophyodont molars. The common ancestor of Amphitherium and zatheres probably had lost the primitive pattern of posterior shift of the postcanine dentition, which appears to have consisted of five premolars and four or possibly five molars. In Amphitherium the number of molars probably was secondarily increased. 相似文献
14.
DL Rabosky 《Evolution; international journal of organic evolution》2012,66(8):2622-2627
The hypothesis of punctuated equilibrium proposes that most phenotypic evolution occurs in rapid bursts associated with speciation events. Several methods have been developed that can infer punctuated equilibrium from molecular phylogenies in the absence of paleontological data. These methods essentially test whether the variance in phenotypes among extant species is better explained by evolutionary time since common ancestry or by the number of estimated speciation events separating taxa. However, apparent \"punctuational\" trait change can be recovered on molecular phylogenies if the rate of phenotypic evolution is correlated with the rate of speciation. Strong support for punctuational models can arise even if the underlying mode of trait evolution is strictly gradual, so long as rates of speciation and trait evolution covary across the branches of phylogenetic trees, and provided that lineages vary in their rate of speciation. Species selection for accelerated rates of ecological or phenotypic divergence can potentially lead to the perception that most trait divergence occurs in association with speciation events. 相似文献
15.
Whole-Genome Duplication and Plant Macroevolution 总被引:1,自引:0,他引:1
16.
Jonathan L. Payne Adam B. Jost Steve C. Wang Jan M. Skotheim 《Evolution; international journal of organic evolution》2013,67(3):816-827
Size is among the most important traits of any organism, yet the factors that control its evolution remain poorly understood. In this study, we investigate controls on the evolution of organismal size using a newly compiled database of nearly 25,000 foraminiferan species and subspecies spanning the past 400 million years. We find a transition in the pattern of foraminiferan size evolution from correlation with atmospheric pO2 during the Paleozoic (400–250 million years ago) to long‐term stasis during the post‐Paleozoic (250 million years ago to present). Thus, a dramatic shift in the evolutionary mode coincides with the most severe biotic catastrophe of the Phanerozoic (543 million years ago to present). Paleozoic tracking of pO2 was confined to Order Fusulinida, whereas Paleozoic lagenides, miliolids, and textulariids were best described by the stasis model. Stasis continued to best describe miliolids and textulariids during post‐Paleozoic time, whereas random walk was the best supported mode for the other diverse orders. The shift in evolutionary dynamics thus appears to have resulted primarily from the selective elimination of fusulinids at the end of the Permian Period. These findings illustrate the potential for mass extinction to alter macroevolutionary dynamics for hundreds of millions of years. 相似文献
17.
N. O. Bianchi M. S. Bianchi P. Pamilo L. Vidal-Rioja A. de la Chapelle 《Journal of molecular evolution》1992,34(1):54-61
Summary Zinc finger-Y (Zfy) and zinc finger-X (Zfx) genes were analyzed by Southern blotting in male and female specimens of 10 species belonging to the oryzomyne-akodontine stock of Cricetidae rodents. DNA fragments were used as characters to construct a parsimony tree of the genes. Zfx and Zfy trees in general coincide with the evolutionary history of the taxa. Both trees show Oryzomys longicaudatus genes as the outgroup whereas Akodon xanthorrhinus genes are also distant from those of the other species. Oxymycterus rufus and Bolomys obscurus share related sequences, while genes from the other six Akodon species form a group of their own. It was found that 9 out of the 10 species analyzed show Zfy amplification in a range varying from 2 to 24 copies and with a pattern that is clade specific. The estimation of the average changes per character strongly suggests that Zfy has evolved more rapidly than Zfx; our estimates of the rate of nucleotide substitution are 4.6 times higher for Zfy than for Zfx.
Offprint requests to: N.O. Bianchi 相似文献
18.
Aaron M. Olsen 《Ecology and evolution》2015,5(21):5016-5032
Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low‐quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds. 相似文献
19.
Ross C. P. Mounce Robert Sansom Matthew A. Wills 《Evolution; international journal of organic evolution》2016,70(3):666-686
Morphological cladograms of vertebrates are often inferred from greater numbers of characters describing the skull and teeth than from postcranial characters. This is either because the skull is believed to yield characters with a stronger phylogenetic signal (i.e., contain less homoplasy), because morphological variation therein is more readily atomized, or because craniodental material is more widely available (particularly in the palaeontological case). An analysis of 85 vertebrate datasets published between 2000 and 2013 confirms that craniodental characters are significantly more numerous than postcranial characters, but finds no evidence that levels of homoplasy differ in the two partitions. However, a new partition test, based on tree‐to‐tree distances (as measured by the Robinson Foulds metric) rather than tree length, reveals that relationships inferred from the partitions are significantly different about one time in three, much more often than expected. Such differences may reflect divergent selective pressures in different body regions, resulting in different localized patterns of homoplasy. Most systematists attempt to sample characters broadly across body regions, but this is not always possible. We conclude that trees inferred largely from either craniodental or postcranial characters in isolation may differ significantly from those that would result from a more holistic approach. We urge the latter. 相似文献
20.
Patrick Arnold Eli Amson Martin S. Fischer 《Evolution; international journal of organic evolution》2017,71(6):1587-1599
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large‐scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2–C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints. 相似文献