首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Salterns in the Bretagne (France), exhibiting different stages of salinity of 5% to 33% evolved up to 0.7 mmol methane per m2 per day. Methane concentrations of up to 0.4 mM were found. High methane evolution rates and increased methane concetration were restricted to basins of up to 7% and more than 15% salinity, and to the upper 10 cm of the sediments, where high sulfate concentrations (50 to 100 mM) occurred as well. Basins of 10–15% salinity exhibited only low methane evolution rates (less than 0.05 mmol methane per m2 per day) and low methane concentrations (less than 0.02 mM). Gas bubbles arising during times of increased photosynthetic activity from the microbial mats covering the sediments of the saltern basins contained up to 2% methane. Addition of methylated amines and methanol, but not of H2/CO2, formate or acetate, to sediments slurries from basins of up to 12% salinity resulted in a rapid enrichment of methanogenic populations. Enriched methanogenic bacteria did not grow at salinities exceeding 15% or temperatures exceeding 45°C, and showed characteristics similar to those documented for Methanococcus halophilus and strain SF1 (DSM 3243). No enrichments were obtained from basins of more than 20% salinity in spite of methane being produced and evolved from those basins.  相似文献   

2.
Abstract In situ concentrations of hydrogen and other metabolites involved in H2-consuming and H2-producing reactions were measured in anoxic methanogenic lake sediments, sewage sludge and fetid liquid of cottonwood. The data were used to calculate the Gibbs free energies of the metabolic reactions under the conditions prevailing in situ. The thermodynamics of most of the reactions studied were exergonic with Gibbs free energies being more negative for H2-dependent sulfate reduction methanogenesis acetogenesis and for H2-producing lactate fermentation ethanol fermentation. Butyrate and propionate fermentation, on the other hand, were endergonic under in situ conditions. This observation is interpreted by suggesting that butyrate and propionate is degraded within microbial clusters which shield the fermentating bacteria from the outside H2 (and acetate) pool.  相似文献   

3.
Abstract The microbial ecology of the sulfur cycle in the anaerobic part of Rotsee (Switzerland) was studied. Almost all the sulfate reduction took place at the sediment surface at a rate of 2 mmol SO2−4 reduced m−2 day−1. Approx. 104 sulfate reducers per ml were present in the surface sediments. The sulfide produced was phototrophically consumed mainly by Thiopedia rosea, Lamprocystis roseopersicina and ' Pelochromatium roseum ' consortia. Thiopedia rosea migrated diurnally about one meter. Bacterial photosynthesis was limited by light and sulfide rather than by temperature.  相似文献   

4.
Abstract: Fatty acids are key intermediates in methanogenic degradation of organic matter in sediments as well as in anaerobic reactors. Conversion of butyrate or propionate to acetate, (CO2), and hydrogen is endergonic under standard conditions, and becomes possible only at low hydrogen concentrations (10-4-10-5 bar). A model of energy sharing between fermenting and methanogenic bacteria attributes a maximum amount of about 20 kJ per mol reaction to each partner in this syntrophic cooperation system. This amount corresponds to synthesis of only a fraction (one-third) of an ATP to be synthesized per reaction. Recent studies on the biochemistry of syntrophic fatty acid-oxidizing bacteria have revealed that hydrogen release from butyrate by these bacteria is inhibited by a protonophore or the ATPase inhibitor DCCD ( N , N '-dicyclohexyl carbodiimide), indicating that a reversed electron transport step is involved in butyrate or propionate oxidation. Hydrogenase, butyryl-CoA dehydrogenase, and succinate dehydrogenase acitivities were found to be partially associated with the cytoplasmic membrane fraction. Also glycolic acid is degraded to methane and CO2 by a defined syntrophic coculture. Here the most difficult step for hydrogen release is the glycolate dehydrogenase reaction ( E '0=−92 mV). Glycolate dehydrogenase, hydrogenase, and ATPase were found to be membrane-bound enzymes. Membrane vesicles produced hydrogen from glycolate only in the presence of ATP; protonophores and DCCD inhibited this hydrogen release. This system provides a suitable model to study reversed electron transport in interspecies hydrogen transfer between fermenting and methanogenic bacteria in methanogenic biomass degradation.  相似文献   

5.
Abstract A method is proposed that allows the enrichment and most probable number estimation of H2/CO2-utilizing acetogenic bacteria. It is based on the difference in acetate production for serial dilutions incubated under either a test H2/CO2 (4:1), or a control N2/CO2 (4:1) headspace atmosphere. A nutritionally non-selective medium was used, containing bromoethane-sulfonic acid as inhibitor of methanogenic archaea and 10% pre-incubated clarified rumen fluid. Acetogenic bacteria were enumerated in rumen and hindgut contents of animals and in human feces. They ranged from below 102 to above 108 per gram wet weight gut content and their population levels were the highest in the absence of methanogenesis. The method described therein should prove useful to better understand the diversity and ecological importance of dominant gut acetogens.  相似文献   

6.
Abstract By adding sulfate in the form of solid gypsum, it was possible to transform in situ a predominantly methanogenic sediment ecosystem into a sulfate-reducing one. The concentrations of sulfate, sulfide, methane, acetate, propionate, soluble iron, and manganese were determined in the porewater before and after the transition. Although sulfate was no longer limiting, acetate and propionate continued to accumulate and reached much higher concentrations than under sulfate-limited conditions. Metabolic activities of fermenting bacteria and of sulfate reducers, which belong to the group that incompletely oxidizes organic material, might be responsible for the increased production of volatile fatty acids. The elevated concentrations of soluble Fe(II)2+ and Mn(II)2+ observed in the porewater stem from iron and manganese compounds which may be reduced chemically by hydrogen sulfide and other microbially produced reducing agents or directly through increased activities of the iron and manganese reducing bacteria. In the horizon with high sulfate-reducing activities the methane concentrations in the porewater were lower than in non-stimulated sediment regions. The shape of the concentration depth profile indicates methane consumption through sulfate reducing processes. The in situ experiment demonstrates the response of a natural microbial ecosystem to fluctuations in the environmental conditions.  相似文献   

7.
Abstract Bacterial sulfate reduction and transformations of thiosulfate were studied with radiotracers in a Microcoleus chthonoplastes -dominated microbial mat growing in a hypersaline pond at the Red Sea. The study showed how a diel cycle of oxygen evolution affected respiration by sulfate-reducing bacteria and the metabolism of thiosulfate through oxidative and reductive pathways. Sulfate reduction occurred in both oxic and anoxic layers of the mat and varied diurnally, apparently according to temperature rather than to oxygen. Time course experiments showed that the radiotracer method underestimated sulfate reduction in the oxic zone due to rapid reoxidation of the produced sulfide. Extremely high reduction rates of up to 10 μmol cm−3 d−1 were measured just below the euphotic zone. Although thiosulfate was simultaneously oxidized, reduced and disproportionated by bacteria in all layers of the mat, there was a shift from predominant oxidation in the oxic zone to predominant reduction below. Concurrent disproportionation of thiosulfate to sulfate and sulfide occurred in all zones and was an important pathway of the sulfur cycle in the mat.  相似文献   

8.
Abstract Hydrogen consumption was measured in hot geothermal water from two ponds of the San Federigo solfatara, Tuscany, Italy, where emanation gases contained approx. 4% H2. H2 consumption was completely inhibited by NaOH and partially by HgCl2 indicating microbial utilization. Aerobic and anaerobic H2 consumption activities coexisted in the same water with aerobic activity being higher in one pond and anaerobic activity in the other. The kinetics of H2 consumption were consistent with those of 'Knallgas', methanogenic or sulfidogenic bacteria.  相似文献   

9.
Colonic contents were obtained from two human sudden-death victims within 3 h of death. One of the subjects (1) was methanogenic, the other (2) was a non-CH, producer. Measurements of bacterial fermentation products showed that in both individuals short-chain fatty acids, lactate and ethanol concentrations were highest in the caecum and ascending colon. In contrast, products of protein fermentation, such as ammonia, branched chain fatty acids and phenolic compounds, progressively increased from the right to the left colon, as did the pH of gut contents. In Subject 1, cell population densities of methanogenic bacteria (MB) increased distally through the gut and methanogenic activity was lower in the right (0.78–1–18 μmol CH4 produced/h/g dry wt contents) than in the left colon (1.34 μmol CH4 produced/h/g dry wt contents). Methane production rates did not correlate with MB numbers.
Sulphate-reducing bacteria (SRB) were not found and dissimilatory sulphate reduction was not detected in any region of the colon. Methanogenic bacteria did not occur in subject 2, but high numbers of SRB were present throughout the gut ( ca 109/g dry wt contents). Sulphate reduction rates were maximal in the ascending and transverse colons (0.24 and 0.22 μmol 35SO2–4 reduced/h/g dry wt contents, respectively). Short-chain fatty acid production by caecal contents was up to eight-fold higher than contents from the sigmoid/rectum. These findings demonstrate significant differences in fermentation reactions in different regions of the large gut.  相似文献   

10.
Metabolism of the key intermediates, acetate and hydrogen, in anaerobic hexanoate catabolism by an interacting microbial association isolated from a landfill was examined in the presence of sulphate. Hydrogen (the β-oxidation product of hexanoate and butyrate), was competitively utilized by the component sulphate-reducing bacteria whereas in the absence of sulphate an interaction between H2-utilizing acetogenic and methanogenic bacteria facilitated H2 removal, with acetate catabolism restricted to methanogenic bacteria. A possible mechanism for energy conservation was suggested in which excess electrons were stored as acetate for subsequent usage as an energy source.  相似文献   

11.
Abstract The association of Desulfobulbus sp. with Methanosarcina barkeri 227 was able to produce CH4 from propionate in the presence of sulfate, if a sufficient amount of ferrous iron was added to the media in order to trap the soluble sulfides produced from sulfate. In the absence of ferrous iron, soluble sulfides inhibited the acetoclastic reaction. Attempts to cultivate Desulfobulbus sp. with H2-utilising methanogenic bacteria in the absence of sulfate did not succeed.  相似文献   

12.
Abstract The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0–5 mm layer of the mat: 2.0 × 109 cells cm−3 sediment, and 4.0 × 107 cells cm−3 sediment for the colorless sulfur bacteria and phototrophs, respectively. Kinetic parameters for thiosulfate-limited growth were assessed for Thiobacillus thioparus T5 and Thiocapsa roseopersicina M1, both isolated from microbial mats. For Thiobacillus T5, growing at a constant oxygen concentration of 43 μmol l−1, μmax was 0.336 h−1 and K s 0.8 μmol l−1. Phototrophically grown Thiocapsa strain M1 displayed a μmax of 0.080 h−1 and a K s of 8 μmol l−1 when anoxically grown under thiosulfate limitation. In a competition experiment with thiosulfate as electron donor, Thiocapsa became dominant during a 10-h oxic/14-h anoxic regimen at continuous illumination, despite the higher affinity for thiosulfate of Thiobacillus .  相似文献   

13.
Sulfate-reducing bacteria in littoral sediment of Lake Constance   总被引:6,自引:0,他引:6  
Abstract The viable population of sulfate-reducing bacteria (SRB) in littoral sediments of Lake Constance was investigated using enrichment and enumeration techniques. Enrichment studies established that most types of SRB grew best in media with low salt concentrations (max. 0.4 g Cl/1), consistent with the low salinity of the freshwater habitat. Enumerations were based on an adequate medium with the following electron donors: H2, lactate, acetate, propionate, butyrate, caprylate, succinate, benzoate, or S2O32− for thiosulfate-disproportionating bacteria. Cultures were incubated for 6 weeks to obtain maximum counts. A maximum cell density of 6.3 × 106 cells per ml sediment was estimated, which is the highest number of SRB ever reported for anoxic sediments. A comparison with measured sulfate reduction rates showed that the enumeration techniques were about 10–100-fold more efficient than those previously used. The population of SRB had a characteristic structure consisting of 87.7% H2-utilizing SRB (physiologically resembling the classical Desulfovibrio species); 12.0% propionate utilizers (tentatively identified as Desulfobulbus species); 0.3% long chain fatty acid-oxidizing Desulfovibrio sapovorans species. Acetate-utilizing SRB ( Desulfotomaculum acetoxidans ) constituted ≤ 0.05% of the total estimated population. Moreover, the latter species was only present as inactive spores. Benzoate-degrading SRB were not detected.  相似文献   

14.
Abstract Newly developed low capacity columns were used in suppressed ion chromatography for rapid and highly reproducible determination of SO42− in porewater samples from freshwater sediments without preconcentration of samples. With a 50 μl injection the detection limit for SO42− was ca. 50 pmol (= 1 μ M) with a precision of 1–3% at the 10–200 μM level and <1% at concentrations above 200 μM. SO42− could be measured in 4–5 min with the routinely used eluent (3.0 mM NaHCO3/0.8 mM Na2CO3). When the strength of the eluent was increased to 3.0 mM NaHCO3/2.0 mM Na2CO3, sulfate analysis was possible in less than 3 min, provided that samples were nitrate-free. Under these conditions S2O32− could also be sensitively determined in about 6 min. Examples of application of the method are given for measurements of sulfate reduction rates in freshwater sediment samples from Lake Constance.  相似文献   

15.
Abstract The effects of organic additions on nitrification and dentrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control), 30 g dry weight (dw) m−2 mixed throughout the 10 cm sediment column (30M), 100 g dw m−2 mixed throughout sediments (100M), and 100 g dw m−2 mixed into top 1 cm (100S). After the microcosms had been established for 7–11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurris. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m−2 d−1, and NO3 flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3 (40 μM) in the overlaying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3 supply for denitrificaion. This ratio decreased from 1.55 to 0.05 iwth increase organic addition.  相似文献   

16.
Thermophilic obligately autotrophic H2-oxidizing bacteria from Icelandic hot springs were tested for growth on thiosulfate. Ten strains were tested and all grew on thiosulfate but not on sulfite or sulfur. The product of thiosulfate oxidation was sulfate. The growth rate on thiosulfate was slower (μ=0.12 h-1) than on H2 (μ=0.34 h-1). Washed cells which had been grown on thiosulfate could oxidize thiosulfate rapidly but H2-grown cells oxidized thiosulfate much more slowly and with about a 3 h lag time. The bacteria would not grow on agar medium under H2 but grew on agar medium containing thiosulfate.  相似文献   

17.
Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C18:1, unsaturated LCFA) or palmitate (C16:0, saturated LCFA), was studied by denaturing gradient gel electrophoresis (DGGE) profiling of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments. These enrichment cultures were started using methanogenic inocula in order to assess the competition between methanogenic communities and sulfate-reducing bacteria. Phylogenetic affiliation of rRNA gene sequences corresponding to predominant DGGE bands demonstrated that members of the Syntrophomonadaceae , together with sulfate reducers mainly belonging to the Desulfovibrionales and Syntrophobacteraceae groups, were present in the sulfate-reducing enrichment cultures. Subculturing of LCFA-degrading methanogenic cultures in the presence of sulfate resulted in the inhibition of methanogenesis and, after several transfers, archaea could no longer be detected by real-time PCR. Competition for hydrogen and acetate was therefore won by sulfate reducers, but acetogenic syntrophic bacteria were the only known LCFA-degrading organisms present after subculturing with sulfate. Principal component analysis of the DGGE profiles from methanogenic and sulfate-reducing oleate- and palmitate-enrichment cultures showed a greater influence of the substrate than the presence or absence of sulfate, indicating that the bacterial communities degrading LCFA in the absence/presence of sulfate are rather stable.  相似文献   

18.
Abstract Recent investigations with Methanosarcina barkeri elucidated the role of sodium ions in the energy metabolism of methanogenic bacteria and provided evidence for a novel mechanism of energy transduction with Na+ as the coupling ion. During methanogenesis from methanol, an eletrochemical sodium gradient generated by a Na+/H+ antiporter is used as the driving force for the thermodynamically unfavourable oxidation of methanol to the formal redox level of formaldehyde. During methanogenesis from H2+ CO2, the reverse reaction, the reduction of formaldehyde to the level of methanol, is accompanied by a primary, electron transport-driven sodium extrusion. Acetogenesis from H2+ CO2 as carried out by Acetobacterium woodii is a sodium-dependent process and is accompanied by the generation of a transmembrane sodium gradient with the reduction of formaldehyde to the level of methanol as the sodium-dependent step.  相似文献   

19.
Abstract The metabolism of methanol by acidogenic bacteria ( Butyribacterium methylotrophicum, Sporomusa ovata and Acetobacterium woodii ) was studied in pure culture and in defined mixed cultures with sulfate-reducing bacteria ( Desulfovibrio vulgaris ) or methanogenic bacteria ( Methanobrevibacter arboriphilus strain AZ). In the mixed cultures, less acids (acetate and/or butyrate) were formed per unit methanol converted than in pure cultures. In these mixed cultures, a significant production of sulfide or methane was observed despite the inability of the sulfate reducer and the methanogen to use methanol as an energy substrate. These results are explained in terms of interspecies hydrogen transfer between the acidogens (converting part of the methanol to 1 CO2 and 3 H2) and the Desulfovibrio or Methanobrevibacter species. The bioenergetic aspects of this process and its ecological implications are discussed.  相似文献   

20.
Abstract The sulfur cycle in a microbial mat was studied by determining viable counts of sulfate-reducing bacteria, chemolithoautotrophic sulfur bacteria and anoxygenic phototrophic bacteria. All three functional groups of sulfur bacteria revealed a maximum population density in the uppermost 5 mm of the mat: 1.1 × 108 cells of sulfate reducers cm−3 sediment, 2.0 × 109 cells of chemolithoautotrophs cm−3 sediment, and 4.0 × 107 cells of anoxygenic phototrophs cm−3 sediment. Bacterial dynamics were studied by sulfate reduction rate measurements, both under anoxic conditions (dark incubation) and oxic conditions (incubation in the light), and determination of the vertical distribution of the potential rate of thiosulfate consumption under oxic conditions. Sulfate reduction rates in the top 5 mm of the sediment were 566 nmol cm−3 d−1 in the absence of oxygen, and 123 nmol cm−3 d−1 in the presence of oxygen. In the latter case, the maximum rate was found in the 5–10-mm depth horizon (361 nmol cm−3 d−1). Biological consumption of amended thiosulfate was rapid and decreased with depth, while in the presence of molybdate, thiosulfate consumption decreased to 10–30% of the original rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号