首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured endothelial cells and arterial smooth muscle cells have been shown to modify LDL in a way that leads to rapid uptake by macrophages. Previous studies have demonstrated that this modification involves free radical peroxidation of LDL, and that the role of the cells was to accelerate oxidation under conditions where it otherwise would occur slowly. The objective of the present study was to determine whether the modification was mediated by oxygen-derived free radicals, and whether the ability of a given cell type of line to modify LDL was related to its secretion rate of O2- or H2O2. The results showed that modification required the presence of oxygen, and could be specifically inhibited by superoxide dismutase but not by catalase or by mannitol, a hydroxyl radical scavenger. Rabbit aortic endothelial cells, rabbit arterial smooth muscle cells, monkey arterial smooth muscle cells and human skin fibroblasts were all found to modify LDL, and all of these cell types generated more O2- (superoxide dismutase-inhibitable cytochrome c reduction) than a line of bovine aortic endothelial cells that did not modify LDL. The content of superoxide dismutase and catalase was higher in bovine aortic endothelial cells than in the cell lines that modified LDL, but glutathione peroxidase levels were not different. It was concluded that cells that were capable of modifying LDL produced superoxide or a substance that could be converted to superoxide in the medium, and that superoxide was an important, though possibly indirect, mediator of the modification of LDL by cells.  相似文献   

2.
Stimulated peripheral blood mononuclear cells (PBMC) can oxidize normal lipoproteins, and sufficiently oxidized lipoproteins are cytotoxic. However, the role of lipid peroxidation in the inhibition of mitogen-stimulated PBMC proliferation by physiologic concentrations of normal lipoproteins is unclear. In the present investigation, normal low density lipoprotein (LDL) and very low density lipoprotein (VLDL) suppressed [3H]thymidine incorporation and gamma interferon production in concanavalin A-stimulated PBMC without causing cell death. This suppression was accompanied by parallel increases in lipid peroxidation products measured as thiobarbituric acid reactive substances (TBARS). In contrast, high density lipoprotein (HDL) failed to inhibit PBMC and TBARS remains low. Differences between the PBMC suppression from LDL, VLDL, and HDL were best accounted for by normalizing the lipoprotein concentrations by their total lipid content. Moreover, the antioxidants superoxide dismutase and butylated hydroxytoluene each substantially ameliorated the inhibition of PBMC caused by LDL, and reduced the levels of lipid peroxidation products that were generated. Altogether, these results suggest that reactive oxygen species generated by stimulated PMBC may cause oxidative alterations of normal lipoproteins that may, in turn, account for much of the previously reported inhibition of PBMC by normal lipoproteins.  相似文献   

3.
The human hepatoblastoma cell line HepG2 is a liver model commonly used for lipid metabolism studies. Numerous cell types have been found to oxidize low-density lipoprotein (LDL) but, to our knowledge, the effects of HepG2 cells on LDL have not been investigated. We found that LDL is modified by HepG2 cells through a peroxidative mechanism, as judged by an increase in TBARS content (which was prevented in the presence of the antioxidants vitamin E, 2, 6-di-tert-butyl-cresol and probucol), increased degradation by J774 macrophages, decreased internalization by MRC5 fibroblasts, and aggregation of apo B. Aspirin and allopurinol, which inhibit cyclooxygenase and xanthine-oxidase activities, respectively, had no effect on HepG2-induced LDL modification, and neither did catalase, which dismutates hydrogen peroxide; or mannitol, which scavenges hydroxyl radicals. In contrast, superoxide dismutase, a superoxide anion scavenger, and glutamate and threonine, which alter cellular cystine uptake, prevented LDL modifications, as did the removal of cysteine/cystine from the culture medium. Oxidation of LDL by HepG2 cells might thus involve superoxide anion production and/or thiol metabolism.  相似文献   

4.
Treatment of bovine pulmonary artery smooth muscle microsomes with the superoxide radical generating system hypoxanthine plus xanthine oxidase stimulated iron release, hydroxyl radical production and lipid peroxidation. Pretreatment of the microsomes with deferoxamine or dime thy lthiourea markedly inhibited lipid peroxidation, and prevented hydroxyl radical production without appreciably altering iron release. The superoxide radical generating system did not alter the ambient superoxide dismutase activity. However,addition of exogenous superoxide dismutase prevented superoxide radical induced iron release,hydroxyl radical production and lipid peroxidation. Simultaneous treatment of the microsomes with deferoxamine, dimethylthiourea or superoxide dismutase prevented hydroxyl radical production and liqid peroxidation. While deferoxamine or dimethylthiourea did not appreciably alter iron release, superoxide dismutase prevented iron release. However, addition of deferoxamine, dimethylthiourea or superoxide dismutase even 2 min after treatment did not significantly inhibit lipid peroxidation, hydroxyl radical production and iron release. Pretreatment of microsomes with the anion channel blocker 4,4’- dithiocyano 2,′- disulphonic acid stilbine did not cause any discernible change in chemiluminiscence induced by the superoxide radical generating system but markedly inhibited lipid peroxidation without appreciably altering iron release and hydroxial radical production.  相似文献   

5.
Oxidation of low density lipoprotein (LDL) has been shown to occur in the artery wall of atherosclerotic lesions in both animal models and human arteries. The oxidant(s) responsible for initiating this process are under intensive investigation and 15-lipoxygenase has been suggested in this context. Another possibility is that nitric oxide and superoxide, generated by cells present in the artery wall, react together to form peroxynitrite which decomposes to form the highly reactive hydroxyl radical. In the present study we have modelled the simultaneous generation of superoxide and nitric oxide by using the sydnonimine, SIN-1 and have investigated its effects on LDL. SIN-1 liberates both superoxide and nitric oxide during autooxidation resulting in the formation of hydroxyl radicals. We have demonstrated that superoxide generated by SIN-1 is not available to take part in a dismutation reaction since it reacts preferentially with nitric oxide. It follows, therefore, that during the autooxidation of SIN-1 little or no superoxide, or perhydroxyl radical will be available to initiate lipid peroxidation. We have shown that SIN-1 is capable of initiating the peroxidation of LDL and also converts the lipoprotein to a more negatively charged form. The SIN-1-dependent peroxidation of LDL is completely inhibited by superoxide dismutase which scavenges superoxide. Neither sodium nitroprusside or S-nitroso-n-acetyl penicillamine, which only produce nitric oxide, are able to modify LDL. These results are consistent with the hypothesis that a product of superoxide and nitric oxide could oxidize lipoproteins in the artery wall and so contribute to the pathogenesis of atherosclerosis in vivo.  相似文献   

6.
Tetravalent vanadium mediated oxidation of low density lipoprotein   总被引:1,自引:0,他引:1  
1. Tetravalent vanadium causes oxidation of low density lipoprotein (LDL) as manifest by protein degradation and lipid peroxidation. 2. Oxidative modification of the apolipoprotein B-100 is paralleled by the formation of thiobarbituric acid reactive substance and fluorescent chromolipid production. 3. The metal chelators ethylenediamine tetracetic acid and desferrioxamine, and the alcohols, ethanol and isopropanol inhibit the oxidation of LDL by tetravalent vanadium. No inhibition is observed with superoxide dismutase, catalase or mannitol. 4. The data suggest that aldehydes formed during the process of lipid peroxidation induced by tetravalent vanadium react with the proteins in LDL to form fluorescent chromolipids and that the oxidative process originates within the hydrophobic domain of LDL.  相似文献   

7.
Heme-mediated oxidative modification of low-density lipoprotein (LDL) plays a crucial role in early atherogenesis. It has been shown that hydrogen sulfide (H2S) produced by vascular smooth muscle cells is present in plasma at a concentration of about 50 µmol/L. H2S is a strong reductant which can react with reactive oxygen species like superoxide anion and hydrogen peroxide. The current study investigated the effect of H2S on hemin-mediated oxidation of LDL and oxidized LDL (oxLDL)-induced endothelial reactions. H2S dose dependently delayed the accumulation of lipid peroxidation products—conjugated dienes, lipid hydroperoxides (LOOH), and thiobarbituric acid reactive substances—during hemin-mediated oxidation. Moreover, H2S decreased the LOOH content of both oxidized LDL and lipid extracts derived from soft atherosclerotic plaque, which was accompanied by reduced cytotoxicity. OxLDL-mediated induction of the oxidative stress responsive gene, heme oxygenase-1, was also abolished by H2S. Finally we have shown that H2S can directly protect endothelium against hydrogen peroxide and oxLDL-mediated endothelial cytotoxicity. These results demonstrate novel functions of H2S in preventing hemin-mediated oxidative modification of LDL, and consequent deleterious effects, suggesting a possible antiatherogenic action of H2S.  相似文献   

8.
Low density lipoprotein (LDL) has been reported to be injurious or toxic to cells in vitro. This injurious effect is, in some instances, due to oxidation of the lipid moiety of the lipoprotein. The objectives of this study were to determine if the oxidation rendering the lipoprotein toxic to human skin fibroblasts occurred by free radical mechanisms, and if so, which of the common free radical oxygen species were involved. The selective free radical blockers or scavengers employed included superoxide dismutase for superoxide, catalase for hydrogen peroxide, dimethylfuran for singlet molecular oxygen, and mannitol for hydroxyl radical. The presence during lipoprotein preparation of general free radical scavengers (vitamin E, butylated hydroxytoluene) or the divalent cation chelator ethylenediamine tetraacetic acid prevented the formation of cytotoxic low density lipoprotein, while the simultaneous presence of superoxide dismutase and catalase partially inhibited its formation. The results indicate that superoxide and/or hydrogen peroxide are involved in the formation of the toxic LDL lipid. The toxic action of oxidized LDL could not be prevented by inclusion of antioxidants in the culture medium, indicating that an oxidized lipid was responsible for cell injury rather than free radicals generated in culture by the action of oxidized LDL. Three separate assays for cell injury (enumeration of attached cells, cell loss of lactate dehydrogenase into the culture medium, and trypan blue uptake) indicated a sequence of events in which the fibroblasts are injured, die, and then detach.  相似文献   

9.
Low density lipoprotein (LDL) undergoes qualitative changes when incubated with endothelial cells. Changes in LDL induced by cultured human endothelial cells were associated with release of substances reacting to thiobarbituric acid; they were prevented by addition of EDTA. Modification of LDL by human endothelium, therefore, appears to involve lipid peroxidation. Proneness of LDL to this process was indicated by its occurrence, to a smaller extent, on incubation in the absence of endothelium. Lipid peroxidation of LDL altered its electrophoretic mobility. Modified LDL, but not native LDL, was readily catabolised by human macrophages. Conditioning by human endothelium increased the rate of fractional catabolism of LDL in rabbits. If lipid peroxidation of LDL takes place in vivo it may promote conversion of macrophages to lipid-laden foam cells in the developing atheromatous plaque.  相似文献   

10.
The protective effects of catechin 7-O-β-D glucopyranoside (C7G) against streptozotocin (STZ)-induced mitochondrial damage in rat pancreatic β-cells (RINm5F) were investigated. A marked increase in mitochondrial reactive oxygen species (ROS) was observed in STZ-treated cells; this increase was restricted by C7G treatment. C7G also scavenged superoxide anions and hydroxyl radicals generated by xanthine/xanthine oxidase (xanthine/XO) and the Fenton reaction (FeSO(4) + H(2) O(2)), respectively. C7G restored activity and expression of both mitochondrial manganese superoxide dismutase (MnSOD) and catalase (CAT), which were suppressed by STZ treatment. In addition, C7G prevented STZ-induced mitochondrial lipid peroxidation, protein carbonyl, and DNA base modification. C7G restored the loss of mitochondrial membrane potential (Δψ) that was disrupted by STZ treatment, and prevented cell death via inhibition of apoptosis. These results suggest that C7G has a protective effect against STZ-induced cell damage by its antioxidant effects and the attenuation of mitochondrial dysfunction.  相似文献   

11.
Atherothrombotic cardiovascular disease associated with hyperhomocysteinemia has been proposed to result, at least in part, from increased vascular oxidative stress. Here we characterize one mechanism by which homocyteine may induce a vascular cell type-specific oxidative stress. Our results show that L-homocysteine at micromolar levels stereospecifically increases lipid peroxidation in cultured endothelial cells, but not in vascular smooth muscle cells or when medium is incubated in the absence of cells. Consistent with these observations, homocysteine also increases the formation of intracellular reactive oxygen species. The pro-oxidant effect of homocysteine can be fully replicated by an equivalent concentration of homocystine (i.e., an oxidized form of homocysteine), but not with cysteine or glutathione. Homocyst(e)ine-dependent lipid peroxidation is independent of H(2)O(2) and alterations in glutathione peroxidase activity, but dependent on superoxide. Mechanistically, the pro-oxidant effect of homocysteine appears to involve endothelial nitric oxide synthase (eNOS), as it is blocked by the eNOS inhibitor L-N(G)-nitroarginine methyl ester. Thus, homocyst(e)ine actively promotes oxidative stress in endothelial cells via an eNOS-dependent mechanism.  相似文献   

12.
Oxidative modification of LDL by vascular cells has been proposed as the mechanism by which LDL become atherogenic. The effect of ibuprofen on LDL modification by copper ions, monocytes and endothelial cells was studied by measuring lipid peroxidation products. Ibuprofen inhibited LDL oxidation in a dose-dependent manner over a concentration range of 0.1 to 2.0 mM. Ibuprofen (2 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during 2 and 6 h incubation in the presence of copper ions by 52 and 28%, respectively. Weak free radical scavenging activity of ibuprofen was observed in the DPPH test. The protective effect of ibuprofen was more marked when oxidation was induced by monocytes or endothelial cells. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides generated in LDL during monocyte-mediated oxidation by 40%. HUVEC-mediated oxidation of LDL in the absence and presence of Cu2+ was reduced by 32 and 39%, respectively. More lipid peroxides appeared when endothelial cells were stimulated by IL-1beta or TNFalpha and the inhibitory effect of ibuprofen in this case was more pronounced. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during incubation of LDL with IL-1beta-stimulated HUVEC by 43%. The figures in the absence and presence of Cu2+ for HUVEC stimulated with TNFalpha were 56 and 59%, respectively. To assess the possibility that ibuprofen acts by lowering the production rate of reactive oxygen species, the intracellular concentration of H2O2 was measured. Ibuprofen (1 mM) reduced intracellular production of hydrogen peroxide in PMA-stimulated mononuclear cells by 69%. When HUVEC were stimulated by IL-1beta or TNFalpha the reduction was 62% and 66%, respectively.  相似文献   

13.
This study compares composition of the rat small intestinal brush border membranes (BBM) and colonic apical membranes (CAM) and their susceptibility to in vitro exposure to various oxidants. Differences were observed between BBM and CAM in their lipid composition, sugar content, alkaline phosphatase (ALP) activity and cholesterol/phospholipid ratio. BBM and CAM were exposed to superoxide generated by xanthine+xanthine oxidase (X-XO) or peroxides such as tertiary butyl hydroperoxide (tBuOOH) and hydrogen peroxide (H(2)O(2)) and alterations in ALP activity, peroxidation parameters and membrane lipids were analyzed. Exposure of BBM and CAM to superoxide resulted in decrease in ALP activity and increase in peroxidation parameters such as protein carbonyl content, malondialdehyde and conjugated diene. Superoxide exposure also resulted in lipid alterations specifically in certain phospholipids. These alterations were prevented either by superoxide dismutase or by allopurinol. Peroxides did not have any significant effect. These results suggest that both BBM and CAM are susceptible to superoxide, which can bring about peroxidation and degradation of membrane lipids specifically, certain phospholipids.  相似文献   

14.
Tissue ischemia promotes vasculogenesis through chemokine-induced recruitment of bone marrow-derived endothelial progenitor cells (EPCs). Diabetes significantly impairs this process. Because hyperglycemia increases reactive oxygen species in a number of cell types, and because many of the defects responsible for impaired vasculogenesis involve HIF1-regulated genes, we hypothesized that HIF1 function is impaired in diabetes because of reactive oxygen species-induced modification of HIF1alpha by the glyoxalase 1 (GLO1) substrate methylglyoxal. Decreasing superoxide in diabetic mice by either transgenic expression of manganese superoxide dismutase or by administration of an superoxide dismutase mimetic corrected post-ischemic defects in neovascularization, oxygen delivery, and chemokine expression, and normalized tissue survival. In hypoxic fibroblasts cultured in high glucose, overexpression of GLO1 prevented reduced expression of both the EPC mobilizing chemokine stromal cell-derived factor-1 (SDF-1) and of vascular epidermal growth factor, which modulates growth and differentiation of recruited EPCs. In hypoxic EPCs cultured in high glucose, overexpression of GLO1 prevented reduced expression of both the SDF-1 receptor CXCR4, and endothelial nitric-oxide synthase, an enzyme essential for EPC mobilization. HIF1alpha modification by methylglyoxal reduced heterodimer formation and HIF1alpha binding to all relevant promoters. These results provide a basis for the rational design of new therapeutics to normalize impaired ischemia-induced vasculogenesis in patients with diabetes.  相似文献   

15.
Endothelial Chlamydia pneumoniae infection promotes oxidation of LDL   总被引:4,自引:0,他引:4  
The bacterium Chlamydia pneumoniae chronically infects atheromatous lesions and is linked to atherosclerosis by modifying inflammation, proliferation, and the lipid metabolism of blood monocytes. As continuous LDL modification in the vascular intima is crucial for atherogenesis we investigated the impact of endothelial infection on LDL oxidation. HUVEC were infected with a vascular C. pneumoniae strain. Supernatants of infected cells but not cell lysates increased lipid peroxidation products (6.44 vs 6.14 nmol/ml, p<0.05) as determined by thiobarbituric acid reacting substances assay. Moreover, supernatants rendered human LDL more susceptible to oxidation as shown in a copper-ion catalysed LDL oxidation assay by a 16% reduction of LDL resistance against pro-oxidative stimuli (p<0.05). Chlamydial infection of vascular endothelial cells releases acellular components that convert LDL to its proatherogenic form and reduce its resistance against oxidation. Foci of chronic endothelial chlamydial infection may thus continuously contribute to the dysregulated lipid metabolism that promotes atherogenesis.  相似文献   

16.
Although the physiological role of uncoupling proteins (UCPs) 2 and 3 is uncertain, their activation by superoxide and by lipid peroxidation products suggest that UCPs are central to the mitochondrial response to reactive oxygen species. We examined whether superoxide and lipid peroxidation products such as 4-hydroxy-2-trans-nonenal act independently to activate UCPs, or if they share a common pathway, perhaps by superoxide exposure leading to the formation of lipid peroxidation products. This possibility can be tested by blocking the putative reactive oxygen species cascade with selective antioxidants and then reactivating UCPs with distal cascade components. We synthesized a mitochondria-targeted derivative of the spin trap alpha-phenyl-N-tert-butylnitrone, which reacts rapidly with carbon-centered radicals but is unreactive with superoxide and lipid peroxidation products. [4-[4-[[(1,1-Dimethylethyl)-oxidoimino]methyl]phenoxy]butyl]triphenylphosphonium bromide (MitoPBN) prevented the activation of UCPs by superoxide but did not block activation by hydroxynonenal. This was not due to MitoPBN reacting with superoxide or the hydroxyl radical or by acting as a chain-breaking antioxidant. MitoPBN did react with carbon-centered radicals and also prevented lipid peroxidation by the carbon-centered radical generator 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AAPH). Furthermore, AAPH activated UCPs, and this was blocked by MitoPBN. These data suggest that superoxide and lipid peroxidation products share a common pathway for the activation of UCPs. Superoxide releases iron from iron-sulfur center proteins, which then generates carbon-centered radicals that initiate lipid peroxidation, yielding breakdown products that activate UCPs.  相似文献   

17.
Elevated level of cellular lipid peroxidation can increase the incidence of vascular disease. The mechanism by which ketosis causes accelerated cellular damage and vascular disease in diabetes is not known. This study was undertaken to test the hypothesis that elevated levels of ketone bodies increase lipid peroxidation in endothelial cells. Human umbilical venous endothelial cells (HUVEC) were cultured for 24 h at 37oC with ketone bodies (acetoacetate, β-hydroxybutyrate). Acetoacetate, but not β-hydroxybutyrate, caused an increase in lipid peroxidation and growth inhibition in cultured HUVEC. To determine whether ketone bodies generate oxygen radicals, studies using cell-free buffered solution were performed. They showed a significant superoxide dismutase (SOD) inhibitable reduction of cytochrome C by acetoacetate, but not by β-hydroxybutyrate, suggesting the generation of superoxide anion radicals by acetoacetate. Additional studies show that Fe2+ potentiates oxygen radical generation by acetoacetate. Thus, elevated levels of ketone body acetoacetate can generate oxygen radicals and cause lipid peroxidation in endothelial cells, providing a possible mechanism for the increased incidence of vascular disease in diabetes.  相似文献   

18.
Normobaric hyperoxia (NBO) is applied for treatment of various clinical conditions related to hypoxia, but it can potentially also induce generation of reactive oxygen species, causing cellular damage. In this study, we examined the effects of 60 h NBO treatment on lipid and protein oxidative damage and activity of superoxide dismutase (Mn-SOD) in brain mitochondria of guinea pigs. Despite significant stimulation of Mn-SOD expression and activity the NBO treatment resulted in accumulation of markers of oxidative lesions, including lipid peroxidation (conjugated dienes, thiobarbituric acid reactive substances) and protein modification (bityrosines, adducts with lipid peroxidation products, oxidized thiols). When inhaled O2 was enriched with oxygen cation, O2•+, the Mn-SOD expression and activity were stimulated to similar extend, but lipid peroxidation and protein oxidation were prevented. These results suggest that long-term NBO treatment causes oxidative stress, but enrichment of inhaled oxygen by oxygen cation can protect the brain again adverse effects of hyperoxia.  相似文献   

19.
Low density lipoprotein was oxidized by neutrophils derived from either C57BL/6 mice or myeloperoxidase (MPO)-knockout mice. The generation of superoxide from neutrophils of MPO-knockout mice was about 70% of that from wild-type mice. The extent of the oxidation of human low density lipoprotein (LDL) by phorbol myristate acetate (PMA)-activated neutrophils of wild-type and MPO-knockout mice was assessed by measuring consumption of a-tocopherol and formation of phosphatidylcholine hydroperoxide (PCOOH) and cholesteryl ester hydroperoxide (CEOOH). Little consumption of a-tocopherol was observed in both oxidations. It was found, however, that lipid hydroperoxides were accumulated with time in both oxidations and that the rates of formation of PCOOH and CEOOH in the oxidation by MPO-knockout neutrophils were about 66 and 44% of those by wild-type neutrophils, respectively. The lipid peroxidation was completely inhibited by adding superoxide dismutase (SOD) in both cases. The addition of L-tyrosine and SOD enhanced lipid peroxidation of LDL induced by wild-type neutrophils but not by MPO-knockout ones. These results suggest that, regardless of their MPO activity, neutrophils induce lipid peroxidation of LDL by a superoxide-dependent pathway, and that MPO-catalyzed lipid peroxidation is enhanced by the presence of an appropriate amount of free tyrosine and further enhanced by SOD.  相似文献   

20.
Human monocytes, upon activation with opsonized zymosan, altered low-density lipoprotein (LDL) during a 24-h co-incubation, resulting in its oxidation and acquisition of cytotoxic activity against target fibroblast cell lines. Both the oxidation of LDL and its conversion to a cytotoxin were enhanced with time of incubation, with the most substantial changes occurring after 6 h of culture of LDL with activated monocytes. Unactivated monocytes did not mediate either alteration. Superoxide anion (O2-) participated in both the oxidation of LDL and its conversion to a cytotoxin since addition of superoxide dismutase (SOD) at the beginning of the co-incubation inhibited, in a concentration dependent fashion, both the monocyte-mediated oxidation and the monocyte-mediated conversion of LDL to a cytotoxin. As expected, the rate of superoxide anion release was greatest during the respiratory burst, very early in the 24-h incubation (0 to 2 h); however, exposure of LDL to monocytes during the respiratory burst was not required for LDL oxidation. The lower levels of O2- released by the cells hours after the respiratory burst had subsided were sufficient to lead to the initiation of LDL oxidation. Three results indicated that the oxidative modification of LDL into a cytotoxin required O2(-)-independent free radical propagation after O2(-)-dependent initiation. First, oxidation of LDL exposed to the activated, superoxide anion-releasing monocytes for 6 h could be almost completely blocked by the addition at 6 h of the general free radical scavenger butylated hydroxytoluene, but not by SOD. Second, LDL oxidation proceeded even after removal of LDL from the superoxide anion-producing, activated cells after various durations of exposure. Third, the development of substantial levels of lipid peroxidation products and the development of greater cytotoxicity occurred after 6 h of exposure of LDL to activated cells, long after peak O2- release had subsided. These results lead us to conclude that monocyte-mediated oxidation of LDL, leading to its transformation into a cytotoxin, requires release of O2- occurring as a result of activation but not necessarily during the respiratory burst, and also requires O2(-)-independent free radical propagation. The modification of LDL into a potent toxin by activated monocytes may explain the tissue damage in atherosclerotic lesions and other pathologic sites in which inflammatory cells congregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号