首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excitatory effects of microiontophoretically applied quisqualic (QUIS), N-methyl-D-aspartic (NMDA), and quinolinic (QUIN) acids were investigated using intracellular recording from CAl pyramidal neurones in slices of rat hippocampus. QUIS evoked only simple action potentials superimposed upon a depolarization which attained a clear plateau. When this level had been reached, increased ejecting currents did not produce further depolarization. By contrast, with low currents NMDA and QUIN elicited small membrane depolarizations which triggered bursts of action potentials superimposed upon rhythmically occurring depolarizing shifts. Larger currents caused depolarization which if sufficiently large completely blocked spike activity. Tetrodotoxin (TTX) prevented the spikes evoked by QUIS and the bursts of action potentials seen with NMDA and QUIN, and the rhythmic depolarizing shifts then appeared as broad spikes of up to 50 mV in amplitude. These and the underlying membrane depolarization were blocked by Co2+, by the NMDA antagonist D(-)-2-amino-5-phosphonovaleric acid (DAPV), and by kynurenic acid (KYNU). It thus appears that the depolarization and burst firing of rat CAl pyramidal neurones elicited by NMDA and QUIN are Ca2+ dependent while the actions of QUIS are not.  相似文献   

2.
We have combined electrophysiology and immunohistochemistry to study the somatostatin (SS) innervation of neurons in the rat hippocampal slice. After recording the intracellular response of a pyramidal CA1 neuron in vitro to SS, Lucifer Yellow was injected into the cell and the slice fixed and processed for immunohistochemical localization of SS in the vicinity of the recorded neuron. Most pyramidal neurons (70%) responded to SS with a hyperpolarization associated with marked slowing of spontaneous discharge and reduced input resistance. SS-containing elements either crossed, ran parallel or seemingly terminated on the Lucifer Yellow-filled SS-responsive cell. These occurrences of close proximity of apparent pre- and postsynaptic elements were observed in all layers of the CA1 region and may represent synaptic terminations of SS elements on a pyramidal neuron that are likely to elicit membrane hyperpolarizations.  相似文献   

3.
Zhao WJ  Huang XF 《生理学报》2000,52(2):131-136
在大鼠海马CA1区微量注射0.03-0.3nmol生长抑素(somatostatin,SS)后,皮层脑电出现单个或成串的棘尖波,平均脑电总功率著升高,并且在一定范围内(0.006-0.15nmol)具有剂量依赖性。在海马CA1微量注射0.03-0.3nmolSS可诱发大鼠表现出痫样行为,并可加重红藻氨酸诱导的大鼠痫样活动。在95个大鼠海马脑片上细胞外记录SS对CA1区青霉素诱导的114个痫样放电单  相似文献   

4.
The actions of serotonin and norepinephrine were investigated on spinal motoneurones in isolated, hemisected rat and frog spinal cords. Serotonin and norepinephrine induced slowly developing depolarizations of spinal motoneurones which were frequently preceded by brief, low amplitude hyperpolarizations. Neither the depolarizations nor the hyperpolarizations were attenuated by 20 mM Mg2+ or tetrodotoxin, although synaptic transmission was blocked in both cases. It thus appears unlikely that the action of serotonin and norepinephrine on spinal motoneurone polarization and results from an indirect action via interneurones.  相似文献   

5.
The electrophysiological actions of somatostatin (somatotropin release inhibiting factor; SRIF) were investigated in the in vitro hippocampal slice preparation. Intracellular recordings were obtained from pyramidal neurons in area CA1 in slices of hippocampus from guinea pigs and rabbits. Somatostatin, applied via micropressure ejection to CA1 pyramidal-cell somata, was primarily excitatory. The effects, however, were quite variable, with nearly all cells displaying pronounced tachyphylaxis. A majority of cells was depolarized by SRIF, but hyperpolarizations or biphasic depolarization/hyperpolarization responses were also recorded. Only minimal conductance changes were associated with the SRIF-induced voltage changes. Depletion of SRIF, by injection of the intact animal with cysteamine several hours before preparing slices, resulted in no obvious abnormalities in hippocampal slice electrophysiology. Our results obtained with application of exogenous SRIF are consistent with the concept that SRIF acts as an excitatory neurotransmitter/neuromodulator in hippocampus. However, our attempts to demonstrate endogenous SRIF action have thus far been unsuccessful.  相似文献   

6.
Depolarization of the presynaptic terminal by current produced a postsynaptic potential (PSP) which increased with increasing presynaptic polarization and then reached a plateau. Iontophoretic injection of tetraethylammonium ions (TEA) into the presynaptic axon near the terminal produced a prolonged presynaptic spike. The resulting PSP is increased in size and its time course closely followed that of the presynaptic spike. The presynaptic fiber no longer exhibited rectification and strong depolarizations revealed that the PSP reached a maximum with about 110 mv depolarization. Further depolarization produced a decrease in PSP amplitude and finally transmission was blocked. However, a PSP then always appeared on withdrawal of the depolarizing current. Under the conditions of these experiments, the PSP could be considered a direct measure of transmitter release. Bathing the TEA-injected synapse with concentrations of tetrodotoxin (TTX) sufficient to block spike activity in both pre- and postsynaptic axons did not greatly modify postsynaptic electrogenesis. However, doubling TTX concentration reversibly blocked PSP. Thus the permeability changes to Na and K accompanying the spike do not appear necessary for transmitter release. Some other processes related to the level of presynaptic polarization must be involved to explain the data. The inhibition of transmitter release by strong depolarizations appears to be related to Ca action. A membrane Ca current may also be necessary for normal transmitter release.  相似文献   

7.
Tsay D  Dudman JT  Siegelbaum SA 《Neuron》2007,56(6):1076-1089
HCN1 hyperpolarization-activated cation channels act as an inhibitory constraint of both spatial learning and synaptic integration and long-term plasticity in the distal dendrites of hippocampal CA1 pyramidal neurons. However, as HCN1 channels provide an excitatory current, the mechanism of their inhibitory action remains unclear. Here we report that HCN1 channels also constrain CA1 distal dendritic Ca2+ spikes, which have been implicated in the induction of LTP at distal excitatory synapses. Our experimental and computational results indicate that HCN1 channels provide both an active shunt conductance that decreases the temporal integration of distal EPSPs and a tonic depolarizing current that increases resting inactivation of T-type and N-type voltage-gated Ca2+ channels, which contribute to the Ca2+ spikes. This dual mechanism may provide a general means by which HCN channels regulate dendritic excitability.  相似文献   

8.
Ethanol consumption during development affects the maturation of hippocampal circuits by mechanisms that are not fully understood. Ethanol acts as a depressant in the mature CNS and it has been assumed that this also applies to immature neurons. We investigated whether ethanol targets the neuronal network activity that is involved in the refinement of developing hippocampal synapses. This activity appears during the growth spurt period in the form of giant depolarizing potentials (GDPs). GDPs are generated by the excitatory actions of GABA and glutamate via a positive feedback circuit involving pyramidal neurons and interneurons. We found that ethanol potently increases GDP frequency in the CA3 hippocampal region of slices from neonatal rats. It also increased the frequency of GDP-driven Ca2+ transients in pyramidal neurons and increased the frequency of GABA(A) receptor-mediated spontaneous postsynaptic currents in CA3 pyramidal cells and interneurons. The ethanol-induced potentiation of GABAergic activity is probably the result of increased quantal GABA release at interneuronal synapses but not enhanced neuronal excitability. These findings demonstrate that ethanol is a potent stimulant of developing neuronal circuits, which might contribute to the abnormal hippocampal development associated with fetal alcohol syndrome and alcohol-related neurodevelopmental disorders.  相似文献   

9.
Hyperpolarizations, or outward currents, recorded in CA1 pyramidal cells during brief anoxia (2-3 min) (but not postanoxic hyperpolarizations) are markedly reduced (92 +/- 4.8%) by dantrolene sodium, applied by superfusion (10-20 microM). This effect, which is at least partly reversible by prolonged washing, is in keeping with the idea that anoxia activates a Ca2(+)-sensitive K conductance by releasing Ca2+ from internal stores.  相似文献   

10.
We report that both Na+ and Ca2+ currents are involved in the action potentials and in the hormone release from rat somatotrophs in primary culture. Single somatotrophs were identified by reverse hemolytic plaque assay (RHPA) and transmembrane voltage and currents were recorded using the whole-cell mode of the patch-clamp technique. Somatotrophs displayed a mean resting potential of -80mV and an average input resistance of 5.7G omega. Most of the cells showed spontaneous or evoked action potentials. Single action potentials or the initial spike in a burst were characterized by their high amplitude and short duration. Tetrodotoxin (TTX, 1 microM) blocked single action potentials and the initial spikes in a burst, whereas action potentials of long duration and low amplitude persisted. Cobalt (2 mM) plus TTX (1 microM) blocked all the action potentials. Voltage-clamp experiments confirmed the presence of both a TTX-sensitive Na+ current and Co2(+)-sensitive Ca2+ currents. TTX or Na(+)-free medium slightly decreased the basal release of GH but did not markedly modify hGRF-stimulated GH release. However, Co2+ (2 mM), which partially decreased the basal release, totally blocked hGRF-stimulated release. We conclude that (1) Na+ currents which initiate rapid action potentials may participate in spontaneous GH release; (2) Ca2+ currents, which give rise to long duration action potentials and membrane voltage fluctuation, are probably involved in both basal and hGRF-stimulated GH releases.  相似文献   

11.
Abstract: The kinetics of synaptosomal [3H]glutamate release were measured on a subsecond time scale to study the relationship between the length of depolarization and the duration of the secretory event. The time course of release evoked by elevated K+ was complex, proceeding for several seconds after a 200-ms depolarization. We developed a protocol for depolarizing excitable membranes on a millisecond time scale to deliver brief depolarizations, termed the synthetic action potential, by using batrachotoxin to activate Na+ channels. Depolarization is achieved by superfusing with solutions containing elevated concentrations of Na+, and the duration of the depolarization is limited by including tetrodotoxin (TTX) in the superfusion solution to block Na+ entry. Direct measurements of the time courses of Na+ current and membrane depolarizations were made in batrachotoxin-treated sensory neurons using patch clamp recording methods. Rapid increases in Na+ and TTX concentrations produced transient increases in inward Na+ current that decayed with a time course proportional to TTX concentration. Current clamp measurements indicated that, with 10 µ M TTX, depolarizations last ∼30 ms. Nonetheless, synaptosomal release of [3H]glutamate triggered by the synthetic action potential remained prolonged. Brief neuronal action potentials at some synapses may trigger transmitter release that persists for several seconds.  相似文献   

12.
Postsynaptic Ca2+ changes are involved in control of cellular excitability and induction of synaptic long-term changes. We monitored Ca2+ changes in dendrites and spines during synaptic and direct stimulation using high resolution microfluorometry of fura-2 injected into CA3 pyramidal neurons in guinea pig hippocampal slice. When driven by current injection from an intracellular electrode or with synaptic stimulation, postsynaptic Ca2+ accumulations were highest in the proximal dendrites with a pronounced fall-off towards the soma and some fall-off towards more distal dendrites. Muscarinic activation by low concentrations of carbachol strongly increased intradendritic Ca2+ accumulation during directly-evoked repetitive firing. This enhancement occurred in large part because muscarinic activation suppressed the normal Ca(2+)-dependent activation of K-channels that mediates adaptation of firing. Repetitive firing of cholinergic fibers in the slice reproduced the effects of carbachol. Inhibition of acetylcholine-esterase activity by eserine enhanced the effects of repetitive stimulation of chlolinergic fibers. All effects were reversible and were blocked by the muscarinic antagonist atropine. Ca2+ accumulations in postsynaptic spines might be the basis of specificity of synaptic plasticity. With selective stimulation of few associative/comissural fibers, Ca2+ accumulated in single postsynaptic spines but not in the parent dendrite. With strong stimulation, dendrite levels also increased but spine levels were considerably higher. The NMDA-receptor antagonist AP-5 blocked Ca(2+)-peaks in spines, but left Ca2+ changes in dendrite shafts largely unaffected. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, developed with repeated stimulation. Our results demonstrate a spine entity that can act independent from the dendrite with respect to Ca(2+)-dependent processes. Muscarinic augmentation of dendritic Ca2+ levels might reduce diffusional loss of Ca2+ from hot spines into the parent dendrite, thus supporting cooperativity and associativity of synaptic plasticity.  相似文献   

13.
The neuropeptide somatostatin inhibits hormone release from GH4C1 pituitary cells via two mechanisms: inhibition of stimulated adenylate cyclase and a cAMP-independent process. To determine whether both mechanisms involve the guanyl nucleotide-binding protein Ni, we used pertussis toxin, which ADP-ribosylates Ni and thereby blocks its function. Pertussis toxin treatment of GH4C1 cells blocked somatostatin inhibition of both vasoactive intestinal peptide (VIP)-stimulated cAMP accumulation and prolactin secretion. In membranes prepared from toxin-treated cells, somatostatin inhibition of VIP-stimulated adenylate cyclase activity was reduced and 125I-Tyr1-somatostatin binding was decreased more than 95%. In contrast, pertussis toxin did not affect the biological actions or the membrane binding of thyrotropin-releasing hormone. These results indicate that ADP-ribosylated Ni cannot interact with occupied somatostatin receptors and that somatostatin inhibits VIP-stimulated adenylate cyclase via Ni. To investigate somatostatin's cAMP-independent mechanism, we used depolarizing concentrations of K+ to stimulate prolactin release without altering intracellular cAMP levels. Measurement of Quin-2 fluorescence showed that 11 mM K+ increased intracellular [Ca2+] within 5 s. Somatostatin caused an immediate, but transient, decrease in both basal and K+-elevated [Ca2+]. Consistent with these findings, somatostatin inhibited K+-stimulated prolactin release, also without affecting intracellular cAMP concentrations. Pertussis toxin blocked the somatostatin-induced reduction of [Ca2+]. Furthermore, the toxin antagonized somatostatin inhibition of K+-stimulated and VIP-stimulated secretion with the same potency (ED50 = 0.3 ng/ml). These results indicate that pertussis toxin acts at a common site to prevent somatostatin inhibition of both Ca2+- and cAMP-stimulated hormone release. Thus, Ni appears to be required for somatostatin to decrease both cAMP production and [Ca2+] and to inhibit the actions of secretagogues using either of these intracellular messengers.  相似文献   

14.
Glutamate mediates a slow synaptic response in hippocampal slice cultures.   总被引:8,自引:0,他引:8  
Glutamate (GLU) mediates its 'fast' excitatory transmitter action in the brain by directly gating cation-selective ion channels ('ionotropic' receptors). However, GLU can also activate another type of receptor, coupled to phospholipase C ('metabotropic' receptor). In hippocampal cells, stimulation of this metabotropic receptor by GLU, or by a racemic mixture of (1S-3R and 1R-3S) 1-aminocyclopentyl-1,3-dicarboxylate (ACPD), induces a slower excitation mediated by inhibition of K+ currents. We have assessed whether this slow form of metabotropic receptor excitation can contribute to the effects of synaptically released GLU in hippocampal slice cultures, by recording the responses of CA3 pyramidal cells to afferent mossy fibre stimulation. When the fast ionotropic response was blocked pharmacologically, mossy fibre stimulation produced a slow depolarizing postsynaptic potential associated with a decrease in membrane conductance, a depression of the slow after-hyperpolarization following a train of action potentials, and reduced accommodation during the action potential train. Under voltage-clamp, mossy fibre stimulation produced a slow voltage-dependent inward current which resembled that produced by application of exogenous ACPD or quisqualate (QUIS), and which was occluded by these metabotropic agonists. We therefore suggest that synaptically released GLU can induce two types of postsynaptic responses: a fast excitation through activation of ionotropic receptors and a slower excitation associated with inhibition of K+ conductances through activation of metabotropic receptors. This is analogous to the dual action of acetylcholine on ionotropic (nicotinic) and metabotropic (muscarinic) receptors.  相似文献   

15.
郑谦  东英穗 《生理学报》1989,41(6):543-554
用大鼠脑干脑片,给三叉神经中脑核79个神经元作了细胞内记录,测算了20个神经元膜的电学特性:静息电位-60.3±5.6mV;输入阻抗为10.5±5.4MΩ;时间常数1.3±0.5ms。电刺激可诱发动作电位,测算32个神经元的有关参数:阈电位-50—-55mV;波幅69.5±6.1mV;超射11.9±3.6mV;波宽0.8±0.2ms。TTX(0.3μmol/L)或无钠使之消失。通以长时程矩形波电流可引起200—250Hz的2—15个重复放电,但在通电停止前终止,TEA或4-AP可延长放电。膜电位-60—-55mV时在动作电位之后可看到阈下电位波动,它不受TTX的影响,无钙时消失,TEA或4-AP使波幅增大。静息电位去极化可使45个神经元中的40个发生外向整流作用,并被TEA,4-AP或无钙抑制,超极化则发生内向整流作用,Cs或无钠抑制之。灌流液中加入各种钾通道阻断药时神经元的稳态I-V曲线发生相应变化,提示I_(DR),l_A,I_(K(Ca))及I_Q可能都与静息时的膜电导有关。  相似文献   

16.
The electrical properties of the frog taste cells during gustatory stimulations with distilled water and varying concentrations of NaCl were studied with intracellular microelectrodes. Under the Ringer adaptation of the tongue, two types of taste cells were distinguished by the gustatory stimuli. One type, termed NaCl-sensitive (NS) cells, responded to water with hyperpolarizations and responded to concentrated NaCl with depolarizations. In contrast, the other type of cells, termed water-sensitive (WS) cells, responded to water depolarizations and responded to concentrated NaCl with hyperpolarizations. The membrane resistance of both taste cell types increased during the hyperpolarizing receptor potentials and decreased during the depolarizing receptor potentials, Reversal potentials for the depolarizing and hyperpolarizing responses in each cell type were a few millivolts positive above the zero membrane potential. When the tongue was adapted with Na-free Ringer solution for 30 min, the amplitude of the depolarizing responses in the NS cells reduced to 50% of the control value under normal Ringer adaptation. On the basis of the present results, it is concluded (a) that the depolarizing responses of the NS and WS cells under the Ringer adaptation are produced by the permeability increase in some ions, mainly Na+ ions across the taste cell membranes, and (b) that the hyperpolarizing responses of both types of taste cells are produced by a decrease in the cell membrane permeability to some ions, probably Na+ ions, which is slightly enhanced during the Ringer adaptation.  相似文献   

17.
Vervaeke K  Hu H  Graham LJ  Storm JF 《Neuron》2006,49(2):257-270
The persistent Na+ current, INaP, is known to amplify subthreshold oscillations and synaptic potentials, but its impact on action potential generation remains enigmatic. Using computational modeling, whole-cell recording, and dynamic clamp of CA1 hippocampal pyramidal cells in brain slices, we examined how INaP changes the transduction of excitatory current into action potentials. Model simulations predicted that INaP increases afterhyperpolarizations, and, although it increases excitability by reducing rheobase, INaP also reduces the gain in discharge frequency in response to depolarizing current (f/I gain). These predictions were experimentally confirmed by using dynamic clamp, thus circumventing the longstanding problem that INaP cannot be selectively blocked. Furthermore, we found that INaP increased firing regularity in response to sustained depolarization, although it decreased spike time precision in response to single evoked EPSPs. Finally, model simulations demonstrated that I(NaP) increased the relative refractory period and decreased interspike-interval variability under conditions resembling an active network in vivo.  相似文献   

18.
Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent.  相似文献   

19.
Action potentials evoked by depolarizing pulses were studied in immature cultured cerebral cortical neurons from chick embryos. The majority of action potentials were rather small, and they were still elicited in the presence of 10?7 gm/ml tetrodotoxin (TTX), but were almost completely abolished in Na+-free solution or by 10?5 gm/ml TTX in Tyrode's solution. The elevation of external Ca2+ concentration not only increased the maximum rates of rise of action potentials in normal Tyrode's solution with and without low (10?7 gm/ml) TTX but also regenerated action potentials in high (10?5 gm/ml) TTX-containing Tyrode's solution or in Na+-free solution. These high Ca2+ effects were blocked by Mn2+ or Co2+. These results suggest that action potentials, which were predominantly Na-dependent, are partially contributed by Ca ions in immature chick cerebral cortical neurons.  相似文献   

20.
Somatostatin: a metabolic regulator   总被引:1,自引:0,他引:1  
K N Dileepan  S R Wagle 《Life sciences》1985,37(25):2335-2343
Somatostatin, the hypothalamic release-inhibiting factor, has been found to stimulate gluconeogenesis in rat kidney cortical slices. Stimulation by somatostatin was linear and dose-dependent. Other bioactive peptides such as cholecystokinin, gastrointestinal peptide, secretin, neurotensin, vasoactive intestinal peptide, pancreatic polypeptide, beta endorphin and substance P did not affect the renal gluconeogenic activity. Somatostatin-induced gluconeogenesis was blocked by phentolamine (alpha adrenergic antagonist) and prazosin (alpha1 adrenergic antagonist) but not by propranolol (beta adrenergic antagonist) and yohimbine (alpha2 adrenergic antagonist) suggesting that the effect is via alpha1 adrenergic stimuli. Studies on the involvement of Ca2+ revealed that tissue depletion and omission of Ca2+ from the reaction mixture would abolish the stimulatory effect of somatostatin. Furthermore, somatostatin enhanced the uptake of 45calcium in renal cortical slices which could be blocked by lanthanum, an inhibitor of Ca2+ influx. It is proposed that the stimulatory effect of somatostatin on renal gluconeogenesis is mediated by alpha1 adrenergic receptors, or those which functionally resemble alpha1 receptors and that the increased influx of Ca2+ may be the causative factor for carrying out the stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号