首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin‐14 (SRIF) co‐localizes with GABA in the hippocampus and regulates neuronal excitability. A role of SRIF in the control of hippocampal activity has been proposed, although the exact contribution of each SRIF receptor (sst1–sst5) in mediating SRIF action requires some clarification. We used hippocampal slices of wild‐type and sst1 knockout (KO) mice and selective pharmacological tools to provide conclusive evidence for a role of sst1 in mediating SRIF inhibition of synaptic transmission. With single‐ and double‐label immunohistochemistry, we determined the distribution of sst1 in hippocampal slices and we quantified sst1 colocalization with SRIF. With electrophysiology, we found that sst1 activation with CH‐275 inhibited both the NMDA‐ and the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐mediated responses. Results from sst1 KO slices confirmed the specificity of CH‐275 effects; sst1 activation did not affect the inhibitory transmission which was in contrast increased by sst4 activation with L‐803,087 in both wild‐type and sst1 KO slices. The AMPA‐mediated responses were increased by L‐803,087. Functional interaction between sst1 and sst4 is suggested by the finding that their combined activation prevented the CH‐275‐induced inhibition of AMPA transmission. The involvement of pre‐synaptic mechanisms in mediating inhibitory effects of sst1 on excitatory transmission was demonstrated by the finding that CH‐275 (i) increased the paired‐pulse facilitation ratio, (ii) did not influence the AMPA depolarization in the presence of tetrodotoxin, and (iii) inhibited glutamate release induced by epileptiform treatment. We conclude that SRIF control of excitatory transmission through an action at sst1 may represent an important contribution to the regulation of hippocampal activity.  相似文献   

2.
Nociceptin/orphanin FQ (=N/OFQ), the endogenous ligand of ORL1 receptor (=NOP), has been reported to induce, in rodents, after intracerebroventricular (i.c.v.) administration, anti-stress and anxiolytic effects. We have observed that the handling of mice followed by an i.c.v. injection of saline, induced a marked increase in the plasma corticosterone level (+250%) measured 30 minutes later. When N/OFQ was injected intracerebroventricularly, using a 1 microg dose, the increase in plasma corticosterone was significantly lower than in saline injected mice. N/OFQ(1-13)NH(2), known as a NOP receptor agonist, at the same 1 microg dose, also induced a lesser increase in plasma corticosterone level than a saline i.c.v. injection. The pseudopeptide [Phe(1)-psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2), defined either as an agonist or an antagonist of NOP receptor, at the 0.1 microg dose, behaved in a similar manner as N/OFQ, by decreasing the plasma corticosterone level. Finally, [Nphe(1)]N/OFQ(1-13)NH(2), although presumed to be a selective NOP receptor antagonist, also decreased the corticosterone level at the 0.1 microg dose. These observations suggest the implication of N/OFQ in the regulation of response to stress, through an action on the hypothalamo-pituitary-adrenocortical axis. Moreover, they evidence a similar effect of N/OFQ and N/OFQ(1-13)NH(2), but also of two other related peptides displaying antagonist properties on NOP receptors. These data suggest that several subtypes of N/OFQ receptors could exist.  相似文献   

3.
L1 is a multidomain transmembrane neural recognition molecule essential for neurohistogenesis. While moieties in the immunoglobulin-like domains of L1 have been implicated in both heterophilic and homophilic binding, the function of the fibronectin (FN)-like repeats remains largely unresolved. Here, we demonstrate that the third FN-like repeat of L1 (FN3) spontaneously homomultimerizes to form trimeric and higher order complexes. Remarkably, these complexes support direct RGD-independent interactions with several integrins, including alpha(v)beta(3) and alpha(5)beta(1). A pep- tide derived from the putative C-C' loop of FN3 (GSQRKHSKRHIHKDHV(852)) also forms trimeric complexes and supports alpha(v)beta(3) and alpha(5)beta(1) binding. Substitution of the dibasic RK(841) and KR(845) sequences within this peptide or the FN3 domain limited multimerization and abrogated integrin binding. Evidence is presented that the multimerization of, and integrin binding to, the FN3 domain is regulated both by conformational constraints imposed by other domains and by plasmin- mediated cleavage within the sequence RK( downward arrow)HSK( downward arrow)RH(846). The integrin alpha(9)beta(1), which also recognizes the FN3 domain, colocalizes with L1 in a manner restricted to sites of cell-cell contact. We propose that distal receptor ligation events at the cell-cell interface may induce a conformational change within the L1 ectodomain that culminates in receptor multimerization and integrin recruitment via interaction with the FN3 domain.  相似文献   

4.
5.
Lithium NMR relaxation times of some model systems and E. coli cells in high LiCl concentration were measured. The lithium NMR relaxation times were compared to the relaxation times in the holotolerant bacterium Ba1 (Goldberg, M., Risk, M. and Gilboa, H. (1983) Biochim. Biophys. Acta 763, 35–40). Complementary studies of the water protons NMR relaxation times were carried out. It is suggested that the lithium in the H.S. Ba1 bacterium is occulated in small pores of the cell envelope.  相似文献   

6.
The effect of N-methyl-D-aspartic acid (NMDA), a selective glutamate receptor agonist, on the release of previously incorporated [3H]-aminobutyric acid(GABA) was examined in superfused striatal slices of the rat. NMDA (0.01 to 1.0 mM) increased [3H]GABA overflow with an EC50 value of 0.09 mM. The [3H]GABA releasing effect of NMDA was an external Ca2+-dependent process and the GABA uptake inhibitor nipecotic acid (0.1 mM) potentiated this effect. These findings support the view that NMDA evokes GABA release from vesicular pool in striatal GABAergic neurons. Addition of glycine (1 mM), a cotransmitter for NMDA receptor, did not influence the NMDA-induced [3H]GABA overflow. Kynurenic acid (1 mM), an antagonist of glycineB site, decreased the [3H]GABA-releasing effect of NMDA and this reduction was suspended by addition of 1 mM glycine. Neither glycine nor kynurenic acid exerted effects on resting [3H]GABA outflow. These data suggest that glycineB binding site at NMDA receptor may be saturated by glycine released from neighboring cells. Glycyldodecylamide (GDA) and N-dodecylsarcosine, inhibitors of glycineT1 transporter, inhibited the uptake of [3H]glycine (IC50 33 and 16 M) in synaptosomes prepared from rat hippocampus. When hippocampal slices were loaded with [3H]glycine, resting efflux was detected whereas electrical stimulation failed to evoke [3H]glycine overflow. Neither GDA (0.1 mM) nor N-dodecylsarcosine (0.3 mM) influenced [3H]glycine efflux. Using Krebs-bicarbonate buffer with reduced Na+ for superfusion of hippocampal slices produced an increased [3H]glycine outflow and electrical stimulation further enhanced this release. These experiments speak for glial and neuronal [3H]glycine release in hippocampus with a dominant role of the former one. GDA, however, did not influence resting or stimulated [3H]glycine efflux even when buffer with low Na+ concentration was applied.  相似文献   

7.
Collagen plays a critical role in hemostasis by promoting adhesion and activation of platelets at sites of vessel injury. In the present model of platelet-collagen interaction, adhesion is mediated via the inside-out regulation of integrin alpha2beta1 and activation through the glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex. The present study extends this model by demonstrating that engagement of alpha2beta1 by an integrin-specific sequence from within collagen or by collagen itself generates tyrosine kinase-based intracellular signals that lead to formation of filopodia and lamellipodia in the absence of the GPVI-FcR gamma-chain complex. The same events do not occur in platelet suspensions. alpha2beta1 activation of adherent platelets stimulates tyrosine phosphorylation of many of the proteins in the GPVI-FcR gamma-chain cascade, including Src, Syk, SLP-76, and PLCgamma2 as well as plasma membrane calcium ATPase and focal adhesion kinase. alpha2beta1-mediated spreading is dramatically inhibited in the presence of the Src kinase inhibitor PP2 and in PLCgamma2-deficient platelets. Spreading is abolished by chelation of intracellular Ca2+. Demonstration that adhesion of platelets to collagen via alpha2beta1 generates intracellular signals provides a new insight into the mechanisms that control thrombus formation and may explain the unstable nature of beta1-deficient thrombi and why loss of the GPVI-FcR gamma-chain complex has a relatively minor effect on bleeding.  相似文献   

8.
We investigated the molecular mechanisms by which treatment of the human osteoblast-like cell line MG-63 with interleukin 1beta (IL-1) and/or fibroblast growth factor 1 (FGF-1) elicited prostaglandin biosynthesis. IL-1 induced a 5-fold increase in PGE(2) production compared to controls. While treatment with FGF-1 alone did not affect PGE(2) biosynthesis, it enhanced the formation of PGE(2) by IL-1 by an additional 3- to 5-fold. IL-1-induced PGE(2) biosynthesis accompanied increases in steady-state levels of mRNAs encoding cPLA(2) (10- to 15-fold) and PGHS-2 (>3-fold) and concomitant increases in cPLA(2) protein (>3-fold) and PGHS-2 protein (>1. 5-fold). FGF-1 treatment did not affect PGHS-2 gene expression, but enhanced the effect of IL-1 on PGHS-2 expression by an additional 2- to 3-fold. FGF-1 alone enhanced cPLA(2) expression (5-fold), and the combined effects of FGF-1 and IL-1 on cPLA(2) expression were additive. There was no measurable effect of either agonist on PGHS-1 expression. We also discovered that induction of PGE(2) biosynthesis in response to IL-1 or IL-1/FGF-1 was affected by the density of MG-63 cells in culture. Subconfluent cultures displayed a 3- to 10-fold greater response to IL-1 or IL-1/FGF-1 than confluent cultures. The decreased PGE(2) induction by IL-1 in confluent cultures was associated with reduced IL-1 receptor expression. We conclude that the signaling pathways resulting in PGE(2) biosynthesis in response to proinflammatory agents like IL-1 are subject to complex regulation by additional soluble mediators as well as cell-cell or cell-extracellular matrix interactions.  相似文献   

9.
Lactobacillus helveticus B-1 is assumed to have a vitamin B(12)-targeting (or B(12)-binding) site on the cells, since the binding reaction of vitamin B(12) with L. helveticus B-1 cells proceeded instantly and quantitatively. This reaction is specific to complete B(12) compounds, cobalamins, and can be used for a vitamin B(12) assay method by chemiluminescence. The calibration graph was linear from 0.1 to 10.0 ng/mL. The B(12) contents in oyster and sardine were 75.9 and 39.4 microg/100g, respectively. These values were very close to those obtained using a chemilumi-ADVIA Centaur immunoassay system with intrinsic factor and to those obtained by microbiological assays.  相似文献   

10.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

11.
The active dendritic conductances shape the input-output properties of many principal neurons in different brain regions, and the various ways in which they regulate neuronal excitability need to be investigated to better understand their functional consequences. Using a realistic model of a hippocampal CA1 pyramidal neuron, we show a major role for the hyperpolarization-activated current, Ih, in regulating the spike probability of a neuron when independent synaptic inputs are activated with different degrees of synchronization and at different distances from the soma. The results allowed us to make the experimentally testable prediction that the Ih in these neurons is needed to reduce neuronal excitability selectively for distal unsynchronized, but not for synchronized, inputs.  相似文献   

12.
A simplified method for the determination of 25-hydroxy and 1α,25-dihydroxy metabolites of vitamins D2 and D3 in human plasma was developed. Plasma samples were deproteinizated and applied to a Bond Elut C18 OH cartridge to separate 25-hydroxyvitamin D (25-OH-D) and 1α-25-dihydroxyvitamin D [1,25(OH)2D] fractions. The 25-OH-D fraction was purified by a Bond Elut C18 cartridge and 25-OH-D2 and 25-OH-D3 were assayed by HPLC using a Zorbax SIL column. The 1,25(OH)2D fraction obtained above was subsequently applied to HPLC using a Zorbax SIL column to separate 1,25(OH)2D2 and 1,25(OH)2D3 fractions which were determined by a radioreceptor assay (RRA) using calf thymus receptor. The method was applied to nutritional studies.  相似文献   

13.
Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.  相似文献   

14.
The cGMP producing natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP) are widely distributed in the brain and are highly expressed in the hippocampal regions CA1-CA3. To date only limited functional data is available concerning the physiological effects of the peptide hormone in the hippocampus. Therefore, we were interested in how bath application of the peptide hormone might influence synaptic plasticity following high frequency stimulation (HFS). We found that CNP application decreased the population spike (PS) amplitude after HFS, thereby affecting long-term potentiation (LTP) in acute hippocampal slices. To investigate the molecular consequences of CNP application leading to a decrease in PS amplitude, we further analyzed the impact of the hormone on the number of presynaptic synapsin I clusters and number of postsynaptic AMPA receptor subunit GluR1 clusters as well as their co-localization in a primary hippocampal cell culture system. The observed pre-and postsynaptic effects after CNP stimulation of the cGMP pathway in hippocampal cell cultures may underlie the effect of the peptide hormone on LTP.  相似文献   

15.
ABSTRACT

Previously, we reported that endometrial stromal (ES) and endometrial epithelial (EE) cells did not attach to tenascin C, indicating the absence of active integrin α9β1 on the surface of mouse ES and EE cells. However, that study used recombinant tenascin C without fibronectin (FN) type III repeats interacting with integrin heterodimers. Therefore, we re-evaluated the presence of integrin α9β1 actively functioning on the surface of mouse ES and EE cells using full-length native tenascin C with FN type III repeats. The functionality of integrin α9β1 was confirmed using attachment and antibody inhibition assays. Both mouse ES and EE cells showed significantly increased adhesion to native tenascin C, and functional blocking of integrin α9β1 significantly inhibited adhesion to native tenascin C. These results demonstrate that the integrin α9 and β1 subunits function as active heterodimers on the plasma membrane of mouse ES and EE cells, respectively.  相似文献   

16.
A novel group of cyclopentenone prostaglandin-like compounds, deoxy phytoprostanes J(1), together with their precursors, phytoprostanes D(1), were identified in tobacco, tomato and Arabidopsis. Previously, it was thought that 14,15-dehydro-12-oxo-phytodienoic acid, a member of the deoxy phytoprostanes J(1) family, is derived from either 12-oxo-phytodienoic acid or diketols via the allene oxide synthase pathway. Results suggest that 14,15-dehydro-12-oxo-phytodienoic acid as well as structurally related cyclopentenones of the chromomoric acid family are synthesized via the phytoprostane D(1) pathway in planta. Notably, 14,15-dehydro-12-oxo-phytodienoic acid is more abundant than 12-oxo-phytodienoic acid in all three species so far analyzed.  相似文献   

17.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide found in high concentrations in the brain. Using whole-cell recordings of CA1 pyramidal neurons in acute hippocampal slices, we found that either (i) the application of exogenous NAAG or (ii) an increase of endogenous extracellular NAAG, caused by the inhibition of its catabolic enzyme glutamate carboxypeptidase II (GCP II), resulted in a significant reduction in the amplitude of the isolated NMDA receptor (NMDAR) component of the evoked excitatory postsynaptic current (EPSC). Conversely, reduction of endogenous extracellular NAAG caused by either (i) perfusion with a soluble form of pure human GCP II or (ii) affinity purified antibodies against NAAG, enhanced the amplitude of the isolated NMDAR current. Bath application of GCP II inhibitor induced a progressive loss of spontaneous NMDAR miniatures. Furthermore, NAAG blocked the induction of long-term potentiation at Schaffer collateral axons-CA1 pyramidal neuron synapses. All together, these results suggest that NAAG acts as an endogenous modulator of NMDARs in the CA1 area of the hippocampus.  相似文献   

18.
Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin found in feeds and in airborne grain dusts. Aflatoxin B1 requires biotransformation to the AFB1-8,9 epoxide (AFBO) by a bioactivation system and subsequent covalent binding to DNA or proteins, to exert its carcinogenic potential. The lung contains cytochrome P450, prostaglandin-H-synthase, lipoxygenase, epoxide hydrolase and other bioactivation enzymes, and is thus a potential target for the effects of AFB1 via the routes of inhalation and ingestion. The A549 human epithelioid lung cell line and the methylthiazol tetrazolium (MTT) bioassay were used to investigate the cytotoxicity of AFB1 and its chemically synthesised epoxide (AFBO) in vitro. Statistical analysis of the MTT results indicated that there were overall significant differences between the control and both the AFB1-treated (p < 0.0001) and AFBO-treated cells (p = 0.00 2). However, there was no significant difference between AFB1 and AFBO-treated cells, when the entire range of concentrations were assessed against each other (p = 0.2877). Whenanalysed at each concentration, only at 0.01 mM was there a significant difference between the effects of AFB1 and AFBO (p = 0.0358). The results of this investigation show that AFB1 and AFBO are both cytotoxic in the A549 cell line.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
Using a realistic model of a CA1 hippocampal pyramidal neuron, we make experimentally testable predictions on the roles of the non-specific cation current, I h , and the A-type Potassium current, I A , in modulating the temporal window for the integration of the two main excitatory afferent pathways of a CA1 neuron, the Schaffer Collaterals and the Perforant Path. The model shows that the experimentally observed increase in the dendritic density of I h and I A could have a major role in constraining the temporal integration window for these inputs, in such a way that a somatic action potential (AP) is elicited only when they are activated with a relative latency consistent with the anatomical arrangement of the hippocampal circuitry.  相似文献   

20.
Surface micron-scale and submicron scale features increase osteoblast differentiation and enhance responses of osteoblasts to 1,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. β1 integrin expression is increased in osteoblasts grown on Ti substrates with rough microarchitecture, and it is regulated by 1α,25(OH)2D3 in a surface-dependent manner. To determine if β1 has a role in mediating osteoblast response, we silenced β1 expression in MG63 human osteoblast-like cells using small interfering RNA (siRNA). In addition, MG63 cells were treated with two different monoclonal antibodies to human β1 to block ligand binding. β1-silenced MG63 cells grown on a tissue culture plastic had reduced alkaline phosphatase activity and levels of osteocalcin, transforming growth factor β1, prostaglandin E2, and osteoprotegerin in comparison with control cells. Moreover, β1-silencing inhibited the effects of surface roughness on these parameters and partially inhibited effects of 1α,25(OH)2D3. Anti β1 antibodies decreased alkaline phosphatase but increase osteocalcin; effects of 1α,25(OH)2D3 on cell number and alkaline phosphatase were reduced and effects on osteocalcin were increased. These findings indicate that β1 plays a major and complex role in osteoblastic differentiation modulated by either surface microarchitecture or 1α,25(OH)2D3. The results also show that β1 mediates, in part, the synergistic effects of surface roughness and 1α,25(OH)2D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号