首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

7.
8.
The human T-cell leukemia virus type I rex gene product plays a critical role in the expression of the retroviral structural proteins Gag and Env from incompletely spliced mRNAs. Rex protein acts through a cis element (rex-response element [RxRE]) which is located in the U3/R region of the 3' long terminal repeat and is present on all human T-cell leukemia virus type I-specific mRNAs. Two domains of the predicted secondary structure of the RxRE are crucially important for Rex action in vivo as measured by two assay systems. In vitro studies using highly purified recombinant Rex protein revealed a specific and direct interaction with radiolabeled RxRE sequences. The correlation between our in vivo results and the direct binding of Rex protein to mutant and wild-type RxRE sequences supports both the existence of the predicted secondary structure and the importance of this direct interaction with the cis-acting RNA sequence for Rex function in vivo.  相似文献   

9.
10.
11.
R A Ogert  L H Lee    K L Beemon 《Journal of virology》1996,70(6):3834-3843
All retroviruses need mechanisms for nucleocytoplasmic export of their unspliced RNA and for maintenance of this RNA in the cytoplasm, where it is either translated to produce Gag and Pol proteins or packaged into viral particles. The complex retroviruses encode Rev or Rex regulatory proteins, which interact with cis-acting viral sequences to promote cytoplasmic expression of incompletely spliced viral RNAs. Since the simple retroviruses do not encode regulatory proteins, we proposed that they might contain cis-acting sequences that could interact with cellular Rev-like proteins. To test this possibility, we initially looked for a cis-acting sequence in avian retroviruses that could substitute for Rev and the Rev response element in human immunodeficiency virus type 1 expression constructs. A cis-acting element in the 3' untranslated region of Rous sarcoma virus (RSV) RNA was found to promote Rev-independent expression of human immunodeficiency virus type 1 Gag proteins. This element was mapped between RSV nucleotides 8770 and 8925 and includes one copy of the direct repeat (DR) sequences flanking the RSV src gene; similar activity was observed for the upstream DR. To address the function of this element in RSV, both copies of the DR sequence were deleted. Subsequently, each DR sequence was inserted separately back into this deleted construct. While the viral construct lacking both DR sequences failed to replicate, constructs containing either the upstream or downstream DR replicated well. In the absence of both DRs, Gag protein levels were severely diminished and cytoplasmic levels of unspliced viral RNA were significantly reduced; replacement of either DR sequence led to normal levels of Gag protein and cytoplasmic unspliced RNA.  相似文献   

12.
P L Green  M T Yip  Y Xie    I S Chen 《Journal of virology》1992,66(7):4325-4330
The Rex protein of human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) regulates the expression of the viral structural genes and is critical for viral replication. Rex acts by specifically binding to RNAs containing sequences of the R region of the 5' long terminal repeat. Two forms of Rex detected in HTLV-II-infected cells, p26rex and p24rex, differ in the extent of serine phosphorylation. Two-dimensional phosphopeptide analysis indicates that p26rex is extensively phosphorylated at multiple sites. Using a sensitive immunobinding assay, we show that the phosphorylation state of Rex determines the efficiency of binding of Rex to HTLV-II target RNAs. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether virus exists in a latent or productive state. These studies also suggest that phosphorylation of RNA-binding regulatory proteins is a more general mechanism of gene regulation.  相似文献   

13.
Most detailed analyses of the human immunodeficiency virus type 1 (HIV-1) rev gene product have relied on transfection of subgenomic env constructs into cells in which amplification of the transfected DNA occurs. This was necessitated by difficulties in quantitating low-abundance HIV-1 mRNA species and in distinguishing different RNAs of similar sizes. We have modified the conventional polymerase chain reaction method for general use as an extremely sensitive procedure for quantitative analysis of RNA species. Using this method, we assessed the role of the HIV-1 rev gene in viral replication following mutagenesis of an infectious molecular clone, HIV-1JR-CSF. Following transfection of wild-type and mutant proviral constructs, we can specifically detect unspliced RNA and distinguish between the spliced tat-rev and nef mRNAs, which are not resolved by standard RNA analyses. Our results show that the rev protein of HIV-1JR-CSF simultaneously down regulates the expression of tat-rev and nef RNAs and up regulates the level of unspliced full-length HIV-1 RNA. A cis-acting element(s), located exclusively within the env sequences, is essential to exhibit this regulation. Fractionation of cells shows that the ultimate effect of Rev is to direct the appearance of unspliced or singly spliced RNAs in the cytoplasm. Models are discussed for possible mechanisms of Rev action.  相似文献   

14.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

15.
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.  相似文献   

16.

Background

Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE).

Results

MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export.

Conclusion

These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.  相似文献   

17.
18.
19.
20.
Rex protein of human T-cell leukemia virus type 1 (HTLV-1) induces cytoplasmic expression of unspliced gag/pol mRNA and singly spliced env mRNA and thus is essential for replication of the virus. This regulation requires a cis-acting rex-responsive element (RXE), located in the 3' region of the viral RNA. By external deletion, we have identified RXE composed of 205 nucleotides. The secondary structure of RXE was confirmed by studies on its susceptibility to nuclease digestions to consist of four stem-loops and a long stretch of stem structure. Substitution and deletion mutations revealed that two regions of the stem-loops and their secondary structures are essential for rex regulation. Similar secondary structures were found in the corresponding regions of HTLV-2, bovine leukemia virus and human immunodeficiency virus. Furthermore, a sequence of 11 nucleotides in the RXE was found to be conserved in the secondary structures of HTLV-1, HTLV-2, and bovine leukemia virus. These observations suggest that the secondary structure as well as the conserved sequence may be important in expression of unspliced RNA even with diverged sequences as observed in these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号