首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superoxide dismutase 2 (SOD2) is one of the rare mitochondrial enzymes evolved to use manganese as a cofactor over the more abundant element iron. Although mitochondrial iron does not normally bind SOD2, iron will misincorporate into Saccharomyces cerevisiae Sod2p when cells are starved for manganese or when mitochondrial iron homeostasis is disrupted by mutations in yeast grx5, ssq1, and mtm1. We report here that such changes in mitochondrial manganese and iron similarly affect cofactor selection in a heterologously expressed Escherichia coli Mn-SOD, but not a highly homologous Fe-SOD. By x-ray absorption near edge structure and extended x-ray absorption fine structure analyses of isolated mitochondria, we find that misincorporation of iron into yeast Sod2p does not correlate with significant changes in the average oxidation state or coordination chemistry of bulk mitochondrial iron. Instead, small changes in mitochondrial iron are likely to promote iron-SOD2 interactions. Iron binds Sod2p in yeast mutants blocking late stages of iron-sulfur cluster biogenesis (grx5, ssq1, and atm1), but not in mutants defective in the upstream Isu proteins that serve as scaffolds for iron-sulfur biosynthesis. In fact, we observed a requirement for the Isu proteins in iron inactivation of yeast Sod2p. Sod2p activity was restored in mtm1 and grx5 mutants by depleting cells of Isu proteins or using a dominant negative Isu1p predicted to stabilize iron binding to Isu1p. In all cases where disruptions in iron homeostasis inactivated Sod2p, we observed an increase in mitochondrial Isu proteins. These studies indicate that the Isu proteins and the iron-sulfur pathway can donate iron to Sod2p.Metal-containing enzymes are generally quite specific for their cognate cofactor. Misincorporation of the wrong metal ion can be deleterious and tends to be a rare occurrence in biology. A prime example of metal ion selectivity is illustrated by the family of manganese- and iron-containing superoxide dismutases (SODs)3. This large family of enzymes utilizes either manganese or iron as cofactors to scavenge superoxide anion. The iron- and manganese-containing forms are highly homologous to one another at primary, secondary, and tertiary levels and have virtually identical metal binding and catalytic sites (13). Despite this extensive homology, Mn- and Fe-SODs are only active with their cognate metal. Misincorporation of iron into Mn-SOD or vice versa alters the redox potential of the enzyme''s active site and prohibits superoxide disproportionation (4, 5). Nevertheless, misincorporation of iron into Mn-SOD does occur in vivo (6, 7). The isolated Mn-SOD from Escherichia coli is found as a mixture of manganese- and iron-bound forms (7); binding of manganese is favored under oxidative stress, whereas iron binding is increased under anaerobic conditions (3, 8). It has been proposed that changes in bioavailability of manganese versus iron determine the metal selectivity of Mn-SOD in bacterial cells (3, 8). But is this also true for Fe-SOD? Currently, there is no documentation of manganese misincorporation into Fe-SOD in vivo.Unlike bacteria that co-express Mn- and Fe-SOD molecules in the same cell, eukaryotic mitochondria generally harbor only one member of the Fe/Mn-SOD family, a tetrameric Mn-SOD typically known as SOD2 (9). In some organisms, SOD2 is essential for survival (1012), and mitochondria have therefore evolved to prevent iron-SOD2 interactions despite high levels of mitochondrial iron relative to manganese. Using a yeast model system, we have shown previously that metal ion mis-incorporation can occur with Saccharomyces cerevisiae Sod2p (7). Specifically, iron binds and inactivates yeast Sod2p when cells are either starved for manganese or have certain disruptions in mitochondrial iron homeostasis. These disruptions include mutations in MTM1, a mitochondrial carrier protein that functions in iron metabolism (7, 13), and mutations in GRX5 or SSQ1, involved in iron-sulfur biogenesis (14). We proposed that these disruptions lead to expansion of a mitochondrial pool of so-called SOD2-reactive iron (7). Currently, it is unknown whether SOD2-reactive iron represents a major shift in the chemistry of bulk mitochondrial iron or whether it is just a small pool of the metal emerging from one or more specific sites.The grx5 and ssq1 mutants that promote iron-SOD2 interactions encode just two of many components of a complex pathway for iron-sulfur biogenesis (15, 16). One of the key components is a well conserved iron-sulfur scaffold protein originally described for bacteria as IscU, also known as mammalian ISCU and S. cerevisiae Isu1p and Isu2p, referred collectively herein as “Isu proteins” (1722). The iron-sulfur clusters on Isu proteins are labile and can be transferred to target iron-sulfur proteins through the aid of mitochondrial factors including Grx5p and Ssq1p (15, 16). It is not clear whether disruption of the iron-sulfur pathway per se is sufficient to promote iron interactions with yeast Sod2p or whether this effect is specific to grx5, ssq1, and mtm1 mutants.In the current study, we explore the nature of mitochondrial iron that can interact with Sod2p. We find that the changes in mitochondrial metal homeostasis that shift metal binding in yeast Sod2p likewise alter metal cofactor selection in a heterologously expressed Mn-SOD, but not in a Fe-SOD molecule. Through x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) analyses of mitochondrial iron, we detected no major change in bulk mitochondrial iron under conditions that promote iron-SOD2 interactions. SOD2-reactive iron appears to represent a small pool of the metal, and we provide evidence that the iron-sulfur scaffold Isu1p can act as an important source of this reactive iron.  相似文献   

2.
Activation of superoxide dismutases: putting the metal to the pedal   总被引:1,自引:0,他引:1  
Superoxide dismutases (SOD) are important anti-oxidant enzymes that guard against superoxide toxicity. Various SOD enzymes have been characterized that employ either a copper, manganese, iron or nickel co-factor to carry out the disproportionation of superoxide. This review focuses on the copper and manganese forms, with particular emphasis on how the metal is inserted in vivo into the active site of SOD. Copper and manganese SODs diverge greatly in sequence and also in the metal insertion process. The intracellular copper SODs of eukaryotes (SOD1) can obtain copper post-translationally, by way of interactions with the CCS copper chaperone. CCS also oxidizes an intrasubunit disulfide in SOD1. Adventitious oxidation of the disulfide can lead to gross misfolding of immature forms of SOD1, particularly with SOD1 mutants linked to amyotrophic lateral sclerosis. In the case of mitochondrial MnSOD of eukaryotes (SOD2), metal insertion cannot occur post-translationally, but requires new synthesis and mitochondrial import of the SOD2 polypeptide. SOD2 can also bind iron in vivo, but is inactive with iron. Such metal ion mis-incorporation with SOD2 can become prevalent upon disruption of mitochondrial metal homeostasis. Accurate and regulated metallation of copper and manganese SOD molecules is vital to cell survival in an oxygenated environment.  相似文献   

3.
4.
Manganese-dependent superoxide dismutase 2 (SOD2) in the mitochondria plays a key role in protection against oxidative stress. Here we probed the pathway by which SOD2 acquires its manganese catalytic cofactor. We found that a mitochondrial localization is essential. A cytosolic version of Saccharomyces cerevisiae Sod2p is largely apo for manganese and is only efficiently activated when cells accumulate toxic levels of manganese. Furthermore, Candida albicans naturally produces a cytosolic manganese SOD (Ca SOD3), yet when expressed in the cytosol of S. cerevisiae, a large fraction of Ca SOD3 also remained manganese-deficient. The cytosol of S. cerevisae cannot readily support activation of Mn-SOD molecules. By monitoring the kinetics for metalation of S. cerevisiae Sod2p in vivo, we found that prefolded Sod2p in the mitochondria cannot be activated by manganese. Manganese insertion is only possible with a newly synthesized polypeptide. Furthermore, Sod2p synthesis appears closely coupled to Sod2p import. By reversibly blocking mitochondrial import in vivo, we noted that newly synthesized Sod2p can enter mitochondria but not a Sod2p polypeptide that was allowed to accumulate in the cytosol. We propose a model in which the insertion of manganese into eukaryotic SOD2 molecules is driven by the protein unfolding process associated with mitochondrial import.  相似文献   

5.
Eukaryotes express both copper/zinc (SOD1)- and manganese (SOD2)-requiring superoxide dismutase enzymes that guard against oxidative damage. Although SOD1 acquires its copper through a specific copper trafficking pathway, nothing is known regarding the intracellular manganese trafficking pathway for SOD2. We demonstrate here that in Saccharomyces cerevisiae cells delivery of manganese to SOD2 in the mitochondria requires the Nramp metal transporter, Smf2p. SOD2 activity is greatly diminished in smf2Delta mutants, even though the mature SOD2 polypeptide accumulates to normal levels in mitochondria. Treating smf2Delta cells with manganese supplements corrected the SOD2 defect, as did elevating intracellular manganese through mutations in PMR1. Hence, manganese appears to be inaccessible to mitochondrial SOD2 in smf2 mutants. Cells lacking SMF2 also exhibited defects in manganese-dependent steps in protein glycosylation and showed an overall decrease in steady-state levels of accumulated manganese. By comparison, mutations in the cell surface Nramp transporter, Smf1p, had very little impact on manganese accumulation and trafficking. Smf2p resides in intracellular vesicles and shows no evidence of plasma membrane localization, even in an end4 mutant blocked for endocytosis. We propose a model in which Smf2p-containing vesicles play a central role in manganese trafficking to the mitochondria and other cellular sites as well.  相似文献   

6.
Oxygen toxicity in Saccharomyces cerevisiae lacking the copper/zinc superoxide dismutase (SOD1) can be suppressed by overexpression of the S. cerevisiae ATX2 gene. Multiple copies of ATX2 were found to reverse the aerobic auxotrophies of sod1(delta) mutants for lysine and methionine and also to enhance the resistance of these yeast strains to paraquat and atmospheric levels of oxygen. ATX2 encodes a novel 34.4-kDa polypeptide with a number of potential membrane-spanning domains. Our studies indicate that Atx2p localizes to the membrane of a vesicular compartment in yeast cells reminiscent of the Golgi apparatus. With indirect immunofluorescence microscopy, Atx2p exhibited a punctate pattern of staining typical of the Golgi apparatus, and upon subcellular fractionation, Atx2p colocalized with a biochemical marker for the yeast Golgi apparatus. We demonstrate here that this vesicle protein normally functions in the homeostasis of manganese ions and that this role in metal metabolism is necessary for the ATX1 suppression of SOD1 deficiency. First, overexpression of ATX2 caused cells to accumulate increased levels of manganese. Second, a deletion in ATX2 caused a decrease in the apparent available level of intracellular manganese and caused sod1(delta) mutants to become dependent upon exogenous manganese for aerobic growth. Third, ATX2 was incapable of suppressing oxidative damage in cells depleted of manganese ions or lacking the plasma membrane transporter for manganese. The effect of ATX2 overexpression on manganese accumulation and oxygen resistance is similar to what we have previously reported for mutations in PMR1, which encodes a manganese-trafficking protein that also resides in a vesicular compartment. Our studies are consistent with a model in which Atx2p and Pmr1p work in opposite directions to control manganese homeostasis.  相似文献   

7.
8.
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe2+ homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe2+ utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe2+ which was driven by the external Fe2+ concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Δ failed to show this rapid Fe2+ uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe2+ uptake rates. Cu2+ was transported at similar rates as Fe2+, while other divalent cations, such as Zn2+ and Cd2+ apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe2+ across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.  相似文献   

9.
Metal ions are vital for all organisms, and metal ion transporters play a crucial role in maintaining their homeostasis. The yeast (Saccharomyces cerevisiae) Smf transporters and their homologs in other organisms have a central role in the accumulation of metal ions and their distribution in different tissues and cellular organelles. In this work we generated null mutations in each individual SMF gene in yeast as well as in all combinations of the genes. Each null mutation exhibited sensitivity to metal ion chelators at different concentrations. The combination of null mutants DeltaSMF1 + DeltaSMF2 and the triple null mutant Delta3SMF failed to grow on medium buffered at pH 8 and 7.5, respectively. Addition of 5 microm copper or 25 microm manganese alleviated the growth arrest at the high pH or in the presence of the chelating agent. The transport of manganese was analyzed in the triple null mutant and in this mutant expressing each Smf protein. Although overexpression of Smf1p and Smf2p resulted in uptake that was higher than wild type cells, the expression of Smf3p gave no significant uptake above that of the triple mutant Delta3SMF. Western analysis with antibody against Smf3p indicated that this transporter does not reach the plasma membrane and may function at the Golgi or post-Golgi complexes. The iron uptake resulting from expression of Smf1p and Smf2p was analyzed in a mutant in which its iron transporters FET3 and FET4 were inactivated. Overexpression of Smf1p gave rise to a significant iron uptake that was sensitive to the sodium concentrations in the medium. We conclude that the Smf proteins play a major role in copper and manganese homeostasis and, under certain circumstances, Smf1p may function in iron transport into the cells.  相似文献   

10.
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.  相似文献   

11.
In the bakers' yeast Saccharomyces cerevisiae, high affinity manganese uptake and intracellular distribution involve two members of the Nramp family of genes, SMF1 and SMF2. In a search for other genes involved in manganese homeostasis, PHO84 was identified. The PHO84 gene encodes a high affinity inorganic phosphate transporter, and we find that its disruption results in a manganese-resistant phenotype. Resistance to zinc, cobalt, and copper ions was also demonstrated for pho84Delta yeast. When challenged with high concentrations of metals, pho84Delta yeast have reduced metal ion accumulation, suggesting that resistance is due to reduced uptake of metal ions. Pho84p accounted for virtually all the manganese accumulated under metal surplus conditions, demonstrating that this transporter is the major source of excess manganese accumulation. The manganese taken in via Pho84p is indeed biologically active and can not only cause toxicity but can also be incorporated into manganese-requiring enzymes. Pho84p is essential for activating manganese enzymes in smf2Delta mutants that rely on low affinity manganese transport systems. A role for Pho84p in manganese accumulation was also identified in a standard laboratory growth medium when high affinity manganese uptake is active. Under these conditions, cells lacking both Pho84p and the high affinity Smf1p transporter accumulated low levels of manganese, although there was no major effect on activity of manganese-requiring enzymes. We conclude that Pho84p plays a role in manganese homeostasis predominantly under manganese surplus conditions and appears to be functioning as a low affinity metal transporter.  相似文献   

12.
Steady-state concentrations of mitochondrial Mg(2+) previously have been shown to vary with the expression of Mrs2p, a component of the inner mitochondrial membrane with two transmembrane domains. While its structural and functional similarity to the bacterial Mg(2+) transport protein CorA suggested a role for Mrs2p in Mg(2+) influx into the organelle, other functions in cation homeostasis could not be excluded. Making use of the fluorescent dye mag-fura 2 to measure free Mg(2+) concentrations continuously, we describe here a high capacity, rapid Mg(2+) influx system in isolated yeast mitochondria, driven by the mitochondrial membrane potential Deltapsi and inhibited by cobalt(III)hexaammine. Overexpression of Mrs2p increases influx rates 5-fold, while the deletion of the MRS2 gene abolishes this high capacity Mg(2+) influx. Mg(2+) efflux from isolated mitochondria, observed with low Deltapsi only, also requires the presence of Mrs2p. Cross-linking experiments revealed the presence of Mrs2p-containing complexes in the mitochondrial membrane, probably constituting Mrs2p homo- oligomers. Taken together, these findings characterize Mrs2p as the first molecularly identified metal ion channel protein in the inner mitochondrial membrane.  相似文献   

13.
Superoxide dismutases (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP) on CYP2E1-dependent toxicity. The synergistic toxicity of iron and arachidonic acid has been associated with oxidative stress and lipid peroxidation in HepG2 cells that overexpress CYP2E1. Iron plus arachidonic acid caused loss of viability, increased lipid peroxidation and reactive oxygen species generation, and mitochondrial membrane injury in these cells. MnTMPyP partially protected against the decrease in cell viability, the enhanced lipid peroxidation and oxygen radical production, and the loss of mitochondrial membrane potential. The effect of MnTMPyP on arachidonic acid (absence of iron) toxicity was also evaluated. Arachidonic acid also caused toxicity, lipid peroxidation and reduction of the mitochondrial membrane potential. However, in this model, all of these alterations were actually enhanced by MnTMPyP. MnTMPyP also enhanced toxicity in CYP2E1-expressing HepG2 cells depleted of reduced glutathione (GSH). MnCl(2) had little or no effect on the toxicity by arachidonic acid, and MnTMPyP itself did not peroxidize arachidonic acid. MnTMPyP, an SOD mimetic that also scavenges hydrogen peroxide and peroxynitrite, thus showed an antioxidant and protective effect against iron plus arachidonic acid toxicity, but a pro-oxidant and cytotoxic effect against arachidonic acid toxicity in CYP2E1-expressing cells. These different actions may relate to the ability of MnTMPyP to either scavenge or produce free radicals in cells depending upon the prevailing MnTMPyP oxidation-reduction pathways. MnTMPyP and related manganese porphyrin compounds may have potential clinical utility against diseases associated with the overproduction of reactive oxygen species such as ethanol-induced liver injury but it is clear that further investigation of all the pathways of manganese porphyrin oxidation-reduction are necessary.  相似文献   

14.
Iron and oxygen (O2) are intimately associated in many well characterized patho-physiological processes. These include oxidation of the [4Fe-4S] cluster of mitochondrial aconitase and inactivation of this Krebs cycle enzyme by the superoxide anion (O2*-), a product of the one-electron of reduction O2. In contrast to the apparent toxicity of this reaction, the biological consequences of O2*- -mediated inactivation of the cytosolic counterpart of mitochondrial aconitase, commonly known as iron regulatory protein 1 (IRP1), are not clear. Apart from its ability to convert citrate to iso-citrate, IRP1 in its apo-form binds to iron-responsive elements in the untranslated regions of mRNAs coding for proteins involved in iron metabolism, to regulate their synthesis and thus control the cellular homeostasis of this metal. Here, we show that in superoxide dismutase 1 (SOD1) knock-out mice, lacking Cu,Zn-SOD, an enzyme that acts to reduce the concentration of O2*- mainly in cytosol, not only is aconitase activity of IRP1 inhibited but the level of IRP1 is also strongly decreased. Despite such an evident alteration in IRP1 status, SOD1-deficient mice display a normal iron metabolism phenotype. Our findings clearly show that under conditions of O2*- -mediated oxidative stress, IRP1 is not essential for the maintenance of iron metabolism in mammals.  相似文献   

15.
Mutants of Saccharomyces cerevisiae lacking a functional SOD1 gene encoding Cu/Zn superoxide dismutase (SOD) are sensitive to atmospheric levels of oxygen and are auxotrophic for lysine and methionine when grown in air. We have previously shown that these defects of SOD-deficient yeast cells can be overcome through mutations in either the BSD1 or BSD2 (bypass SOD defects) gene. In this study, the wild-type allele of BSD1 was cloned by functional complementation and was physically mapped to the left arm of chromosome VII. BSD1 is identical to PMR1, encoding a member of the P-type ATPase family that localizes to the Golgi apparatus. PMR1 is thought to function in calcium metabolism, and we provide evidence that PMR1 also participates in the homeostasis of manganese ions. Cells lacking a functional PMR1 gene accumulate elevated levels of intracellular manganese and are also extremely sensitive to manganese ion toxicity. We demonstrate that mutations in PMR1 bypass SOD deficiency through a mechanism that depends on extracellular manganese. Collectively, these findings indicate that oxidative damage in a eukaryotic cell can be prevented through alterations in manganese homeostasis.  相似文献   

16.
17.
Yeast Mrs3p and Mrs4p are evolutionarily conserved mitochondrial carrier proteins that transport iron into mitochondria under some conditions. Yeast frataxin (Yfh1p), the homolog of the human protein implicated in Friedreich ataxia, is involved in iron homeostasis. However, its precise functions are controversial. Anaerobically grown triple mutant cells (Deltamrs3/4/Deltayfh1) displayed a severe growth defect corrected by in vivo iron supplementation. Because anaerobically grown cells do not synthesize heme, and they do not experience oxidative stress, this growth defect was most likely due to Fe-S cluster deficiency. Fe-S cluster formation was assessed in anaerobically grown cells shifted to air for a brief period. In isolated mitochondria, Fe-S clusters were detected on newly imported yeast ferredoxin precursor and on endogenous aconitase by means of [35S]cysteine labeling and native gel separation. New cluster formation was dependent on iron addition to mitochondria, and the iron concentration dependence was shifted dramatically upward in the Deltamrs3/4 mutant, indicating a role of Mrs3/4p in iron transport. The frataxin mutant strain lacked protein import capacity because of low mitochondrial membrane potential, although this was partially restored by growth in the presence of high iron. Under these conditions, a kinetic defect in new Fe-S cluster formation was still noted. Import of frataxin into frataxin-minus isolated mitochondria promptly corrected the Fe-S cluster assembly defect without further iron addition. These findings show that Mrs3/4p transports iron into mitochondria, whereas frataxin makes iron already within mitochondria available for Fe-S cluster synthesis.  相似文献   

18.
The yeast ORF YPL060w/LPE10 encodes a homologue of the mitochondrial protein Mrs2p. These two proteins are 32% identical, and have two transmembrane domains in their C-terminal regions and a putative magnesium transporter signature, Y/F-G-M-N, at the end of one of these domains. Data presented here indicate that Lpe10p is inserted into the inner mitochondrial membrane with both termini oriented towards the matrix space. Disruption of the LPE10 gene results in a growth defect on non-fermentable substrates (petite phenotype) and a marked defect in group II intron splicing. The fact that in intron-less strains lpe10 disruptants also exhibit a petite phenotype indicates that functions other than RNA splicing are affected by the absence of Lpe10p. In the mitochondria, concentrations of magnesium, but not of several other divalent metal ions, are increased when Lpe10p is overexpressed and reduced when it is absent. Magnesium concentrations are raised to normal levels and growth on non-fermentable substrates is partially restored by the expression of CorA, the bacterial magnesium transporter, in the lpe10 disruptant. These features are similar to those previously reported for Mrs2p, suggesting that Lpe10p and Mrs2p are functional homologues. However, they cannot easily substitute for each other. Their roles in magnesium homeostasis and, possibly as a secondary effect, in RNA splicing are discussed.  相似文献   

19.
The yeast ATM1 gene is essential for normal cellular iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and increased sensitivity to oxidative stress and transition metal toxicity. Atm1p is an ATP-binding cassette (ABC) transporter localized to the mitochondrial inner membrane. The specific function of Atm1p has not been determined, though roles in both mitochondrial iron export and cytosolic Fe-S cluster assembly have been proposed. We undertook a screen for yeast genes capable of suppressing the abnormalities of cellular iron metabolism demonstrated by Deltaatm1 cells. One of the genes we identified was MDL1, which like ATM1, encodes a mitochondrial inner membrane ABC transporter. Mdl1p has previously been shown to function in the export of peptides from the mitochondrial matrix. We demonstrate that over-expression of MDL1 in Deltaatm1 cells results in a reduction of mitochondrial iron content, and decreased sensitivity to H(2)O(2) and transition metal toxicity. Additionally, in studies of the effect of over-expression and deletion of MDL1, we have identified a novel role for Mdl1p in the regulation of cellular resistance to oxidative stress.  相似文献   

20.
Iron bioavailability is crucial for mitochondrial metabolism and biosynthesis. Dysregulation of cellular iron homeostasis affects multiple aspects of mitochondrial physiology and cellular processes. However, the intracellular iron trafficking pathway in Candida albicans remains unclear. In this study, we characterized the Mrs4–Ccc1–Smf3 pathway, and demonstrated its important role in maintaining cellular iron levels. Double deletion of vacuolar iron exporter SMF3 and mitochondrial iron transporter MRS4 further elevated cellular iron levels in comparison with the single MRS4 deletion. However, deletion of vacuolar iron importer CCC1 in the mrs4?/? mutant restored cellular iron homeostasis to normal wild-type levels, and also normalized most of the defective phenotypes in response to various environmental stresses. Our results also suggested that both Mrs4 and Ccc1 contributed to the maintenance of mitochondrial function. The mrs4?/? and mrs4?/?smf3?/? mutants exhibited an obvious decrease in aconitase activities and mitochondrial membrane potential, whereas deletion of CCC1 in the mrs4?/? mutant effectively rescued these defects. Furthermore, we also found that the Mrs4–Ccc1–Smf3 pathway was indispensable for cell-wall stability, antifungal drug tolerance, filamentous growth and virulence, supporting the novel viewpoint that mitochondria might be the promising target for better antifungal therapies. Interestingly, the addition of exogenous iron failed to rescue the defects on non-fermentable carbon sources or hyphae-inducing medium, indicating that the defects in mitochondrial respiration and filamentous development might result from the disturbance of cellular iron homeostasis rather than environmental iron deprivation. Taken together, our results propose the Mrs4–Ccc1–Smf3 pathway as a potentially attractive target for antifungal drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号