首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to enhance frictional wear resistance and thermal fatigue resistance of brake drums, two kinds of biomimetic coupling materials are prepared by laser surface melting and laser coating technology respectively. These materials are all compounded by base metal and biomimetic coupling units, and have different coupling characteristics, such as the variation of the unit shape, different microstructures and hardness, different chemical compositions of units. The frictional wear resistance and thermal fatigue resistance of biomimetic coupling materials and gray cast iron used for brake drum are compared. The results indicate that frictional wear resistance and thermal fatigue resistance of biomimetic coupling sample is better than that of untreated sample, and among the biomimetic samples, laser coating treated sample has superior resistance to wear and thermal fatigue comparing with laser melting treated sample.  相似文献   

2.

Background

High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation.

Methods

In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating.

Results

The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young’s modulus being 14.5–38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation.

Conclusions

This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.  相似文献   

3.
利用离子束对活性污泥进行不同剂量的辐照处理。分析测定了辐照前后活性污泥的废水处理效果、性能参数与污染负荷的变化。结果表明离子束照射剂量在40×2.6×1013N /cm2~200×2.6×1013N /cm2时,污泥浓度、30 min沉降后的污泥沉降比、污泥指数和活性污泥增长率均略低于对照。40×2.6×1013N /cm2以上的辐照剂量即会导致污泥增长率下降,特别当剂量达到200×2.6×1013N /cm2时,污泥量出现负增长(-1.2%和-2.00%)。N 离子注入的单位活性污泥氨氮、化学需氧量去除率均有提高,在辐照剂量40×2.6×1013N /cm2~160×2.6×1013N /cm2时,处理效果随辐照剂量增加有增强趋势。酚的单位活性污泥处理能力明显优于对照,在辐照剂量为160×2.6×1013N /cm2时系统处理率达到99.76%。  相似文献   

4.
This study concentrates on the development of a new coating technology, which is applied via a solution crystallization process using heterogeneous seeds. Hemi‐sphere pastilles of different materials (seed particles) and isomaltulose solution are used as core materials and coating materials, respectively. The surface nucleation and the growth rate on the surface of seed particles are investigated. An effective crystalline coating, which is very compact in structure without cracking and uniform in shape, is achieved. The growth rate and the quality of coating are related to the degree of subcooling, the retention time and the surface characteristic of the used seed particles. This study focuses on how crystalline‐formed coatings are formed by a crystallization process, how an operating variable effects the quality of coatings and how a good quality of a coating can be achieved.  相似文献   

5.
Spray‐coating is a versatile coating technique that can be used to deposit functional films over large areas at speed. Here, spray‐coating is used to fabricate inverted perovskite solar cell devices in which all of the solution‐processible layers (PEDOT:PSS, perovskite, and PCBM) are deposited by ultrasonic spray‐casting in air. Using such techniques, all‐spray‐cast devices having a champion power conversion efficiency (PCE) of 9.9% are fabricated. Such performance compares favorably with reference devices spin‐cast under a nitrogen atmosphere that has a champion PCE of 12.8%. Losses in device efficiency are ascribed to lower surface coverage and reduced uniformity of the spray‐cast perovskite layer.  相似文献   

6.
The present investigation was aimed at developing and optimizing a simple aqueous tablet-coating formulation and its process. 5-Fluorouracil (5-FU) was used to ascertain the relative lipophilic/hydrophilic behavior of the coating system. Optimization was performed by evaluating the adhesive force strength and cohesive force strength of the tablet coat using a texture analyzer. The in vitro release of 5-FU was found to decrease with an increase in (tablet surface-coat) adhesive force strength. The (tablet-tablet) cohesive force strength was reduced by the addition of magnesium silicate to the coating solution. The addition of magnesium silicate (0.2% w/v) to the carboxymethyl Cassia fistula gum-chitosan (CCG-CH) coating surface significantly inhibited the release of 5-FU possibly due to an increase in the hydrophobic character of the coated tablet surface. This was possible by coating cohesive force strength reduction coating compositions (CCG-CH (70:30) and 0.3% magnesium silicate). Further, the FTIR-ATR and DSC analyses suggested the pivotal role of magnesium silicate in modifying the release of 5-FU from CCG-CH-coated tablets due to hydrogen bonding of its Si-O-Si or Mg-O groups with -OH moieties of CCG-CH.  相似文献   

7.
In theory, porous or rough coatings could be used to reduce early post-operative relative motion about cementless hip prostheses. To investigate this theory, we used detailed, non-linear finite element analysis to compare early relative motion about a well-fit Anatomical Medullary Locking (AML) prosthesis for different amounts of porous coating (full, proximal 2/3, and no coating), both with and without collar support. Details of the model included quantitative computed tomography-derived (QCT-derived) geometric and material properties for the bone, and a no-tension interface condition at all bone-prosthesis interfaces, with Coulomb friction (μ = 1.73) over coated surfaces and zero friction elsewhere. Predicted values of relative motion for this well-fit device were in the range of approximately 1–550 μm. The distribution of relative motion was relatively insensitive to the amount of porous coating but was sensitive to collar support, while the magnitude of relative motion was sensitive to the porous coating and collar support. In addition, a reduction in the porous coating caused larger increases in relative motion when there was no collar support, indicating an interaction between the effects of porous coating and collar support. For example, distal twist increased (full vs 2/3 partial coating) by 38% with collar support and by 58% without collar support. These data suggest that porous coating, or other surface treatments which result in a high coefficient of friction at the bone-prosthesis interface, may well be used to control the magnitude of early relative motion, particularly when there is no collar support.  相似文献   

8.
Chemical imaging techniques are beneficial for control of tablet coating layer quality as they provide spectral and spatial information and allow characterization of various types of coating defects. The purpose of this study was to assess the applicability of multispectral UV imaging for assessment of the coating layer quality of tablets. UV images were used to detect, characterize, and localize coating layer defects such as chipped parts, inhomogeneities, and cracks, as well as to evaluate the coating surface texture. Acetylsalicylic acid tablets were prepared on a rotary tablet press and coated with a polyvinyl alcohol-polyethylene glycol graft copolymer using a pan coater. It was demonstrated that the coating intactness can be assessed accurately and fast by UV imaging. The different types of coating defects could be differentiated and localized based on multivariate image analysis and Soft Independent Modeling by Class Analogy applied to the UV images. Tablets with inhomogeneous texture of the coating could be identified and distinguished from those with a homogeneous surface texture. Consequently, UV imaging was shown to be well-suited for monitoring of the tablet coating layer quality. UV imaging is a promising technique for fast quality control of the tablet coating because of the high data acquisition speed and its nondestructive analytical nature.  相似文献   

9.

Background

Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. However, the interaction of neurons with aerogels remains to be investigated.

Methodology

In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it.

Conclusions/Significance

This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration.  相似文献   

10.
A Composite Polyaniline-Containing Silica Sorbent for DNA Isolation   总被引:1,自引:0,他引:1  
A composite sorbent based on porous glass beads modified with thin polyaniline coating was prepared by precipitating aniline polymerization in the presence of carrier particles. It was shown that the modification ensures the uniform coating of the inner surface of the carrier pores with the polymer layer 70 Å thick. It was shown that the resulting material retains the initial porosity of the carrier and is selective in the separation of nucleic acids and proteins. The polyaniline-coated sorbents were shown to be efficient for both the preparative DNA isolation from bacterial lysates and for analytical purposes, in particular, for studying DNA fragmentation during apoptosis proceeding under UV irradiation of cell lysates of colon carcinoma. The morphological and chromatographic characteristics of the new sorbent were demonstrated to be similar to those of the polyfluorobutadiene sorbent.  相似文献   

11.
A simple, yet effective approach of stabilizing the nanostructure of porous metal‐based electrodes and thus, extending the life of microsolid oxide fuel cells is demonstrated. In an effort to avoid thermal agglomeration of metal electrodes, an ultrathin yttria‐stabilized zirconia (YSZ) is coated on the porous metal (Pt) cathode by the atomic layer deposition, a scalable, and potentially high‐throughput deposition technique. A very thin YSZ coating is found to maintain the morphology of its underlying nanoporous Pt during high temperature operations (500 °C). More interestingly, the YSZ coating is also found to improve oxygen reduction reaction activity by ≈2.5 times. This improvement is attributed to an enhanced triple phase area, especially in the vicinity of the Pt–electrolyte interface; cross‐sectional electron microscopy images indicate that the initially uniform ultrathin YSZ layer becomes a partially agglomerated coating, a favorable structure for a maximized reaction area and fluent oxygen access to the Pt–electrolyte interface.  相似文献   

12.
Subjective feeling of general fatigue and physiological strain were studied in one hundred female professional employees of industrial worker and full-time nurses. Using an interview questionnaire the feeling of fatigue were studied. The subjects were asked to indicate on the body diagram all the areas of musculoskeletal pain from which they perceived discomfort. Furthermore physical strength test consisting of grip test, back and leg strength test were carried out before and after work on all subjects. The results indicated that the two groups of employees showed different symptoms of "pain" and/or "fatigue," with regard to the different parts of body. It was also noted that the physical strength after work was lower for both groups as compared to before work and even lower for the industrial workers than the nurses. The feeling of fatigue between the two investigated groups was not significantly different, but for the musculoskeletal pain was highly significantly different. The worker group used also more pain-killing drugs for releasing the muscle pain. It was evident that ergonomics intervention for female professional workers was of great importance and urgency, particularly for making the workplace more human. Improvement of the working conditions, better organization of work, and ergonomics interventions are suggested as necessary measures for reduction of pain and feeling of discomfort.  相似文献   

13.
We have developed a new methodology for preparing films and paints suitable for use as biocatalytic coatings. The hydrolytic enzymes pronase and alpha-chymotrypsin were immobilized by either sol-gel entrapment or by covalent attachment into a polydimethylsiloxane (PDMS) matrix and cast into thin films or incorporated into an oil-based paint formulation. All of the coatings retained enzymatic activity and adhered to several different materials. The enzymatic films and paints also exhibited higher thermostability than enzyme free in solution or covalently attached to the outer surface of PDMS. A porous membrane based on a PDMS-immobilized enzyme was also prepared by an immersion precipitation process. Protein adsorption measurements showed that the enzyme-containing films and paints adsorbed less protein than enzyme-free controls, and that protein adsorption decreased with increasing proteolytic activity of the coating. These coatings thus provide the means to apply a stable enzymatic surface to a wide range of materials, and may be generally useful as biocatalytic paints and films.  相似文献   

14.
The long-term stability and success of orthopedic implants depend on the osseointegration process, which is strongly influenced by the biomaterial surface. A promising approach to enhance implant integration involves the modification of the surface of the implant by means of polymers that mimic the natural components of the extracellular matrix, for example, polysaccharides. In this study, methacrylate thermosets (bisphenol A glycidylmethacrylate/triethyleneglycol dimethacrylate), a widely used composition for orthopedic and dental applications, have been coated by electrostatic deposition of a bioactive chitosan-derivative. This polysaccharide was shown to induce osteoblasts aggregation in vitro, to stimulate cell proliferation and to enhance alkaline phosphatase activity. The coating deposition was studied by analyzing the effect of pH and ionic strength on the grafting of the polysaccharide. Contact angle studies show that the functionalized material displays a higher hydrophilic character owing to the increase of surface polar groups. The mechanical properties of the coating were evaluated by nanoindentation studies which point to higher values of indentation hardness and modulus (E) of the polysaccharide surface layer, while the influence of cyclic stress on the construct was assessed by fatigue tests. Finally, in vivo tests in minipigs showed that the polysaccharide-based implant showed a good biocompatibility and an ability for osseointegration at least similar to that of the titanium Ti6Al4V alloy with roughened surface.  相似文献   

15.
This study provides new evidence on a long postulated mechanism of phase separation in a polymer/fullerene mixture during spin coating for controlled nanodomains of oriented crystallization and heterojunctions that favor applications in polymer solar cells (PSCs). The simultaneous nanoscale phase separation and crystallization during spin coating of the mixture are traced using in situ grazing‐incidence small‐ and wide‐angle X‐ray scattering. Combined with the complimentary results from time‐resolved optical reflectance spectroscopy, transient stratification of the liquid film during the transition from the flow‐ to evaporation‐dominated stage of spin coating is disclosed; the vertical liquid–liquid phase separation incubates a supersaturated skin layer where fullerene aggregation and polymer crystallization occur and develop concomitantly. Shortly after the transition, the near‐surface structural development is largely pinned, leaving the solvent‐rich bottom layer to diminish via solvent diffusion and evaporation through the thickened skin layer that finally condenses into the spin‐coated film upon solvent depletion. The shear‐enhanced surface layering and supersaturation for the surface‐down nanostructural development are unexpected in all the existing structural models for PSCs. The mechanistic understanding of coupled vertical phase separation and local nanosegregation provides new insights and alternative strategy to the morphology control of spin‐cast PSC active layers in particular and various solution‐processed polymeric films in general.  相似文献   

16.
Horn C  Steinem C 《Biophysical journal》2005,89(2):1046-1054
Purple membranes were adsorbed on freestanding lipid bilayers, termed nano-black lipid membranes (nano-BLMs), suspending the pores of porous alumina substrates with average pore diameters of 280 nm. Nano-BLMs were obtained by first coating the upper surface of the highly ordered porous alumina substrates with a thin gold layer followed by chemisorption of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol and subsequent addition of a droplet of 1,2-diphytanoyl-sn-glycero-3-phosphocholine and octadecylamine dissolved in n-decane onto the hydrophobic submonolayer. By means of impedance spectroscopy, the quality of the nano-BLMs was verified. The electrical parameters confirm the formation of single lipid bilayers with high membrane resistances covering the porous matrix. Adsorption of purple membranes on the nano-BLMs was followed by recording the photocurrents generated by bacteriorhodopsin upon continuous light illumination. The membrane system exhibits a very high long-term stability with the advantage that not only transient but also stationary currents are recordable. By adding the proton ionophore carbonyl cyanide-m-chlorophenylhydrazone the conductivity of the nano-BLMs increases, resulting in a higher stationary current, which proves that proton conductance occurs across the nano-BLMs.  相似文献   

17.
Poly(ethylene glycol), abbreviated as PEG, was covalently attached to the surface of human red blood cells (RBC) and the effects of such coating on the regions near the cell's glycocalyx were explored by means of cell electrophoresis. RBC electrophoretic mobilities were measured, in polymer-free buffers of various ionic strengths, as functions of PEG molecular mass (3.35, 18.5, 35.0, 35.9 kDa), geometry, (linear or 8-arm branched) and polymer/RBC ratio during attachment. The results indicate marked decreases of the mobility (up to 85%) which were affected by polymer molecular mass and geometry. Since PEG is neutral and its covalent attachment only removes positively-charged amino groups on the cell membrane, such decreases of mobility likely reflect structural changes near and within the RBC glycocalyx. Experimental results were analyzed using an extended "hairy sphere" model to consider friction and thickness of the polymer layer. Calculated polymer layer thickness increased with molecular mass for linear PEGs and was less extended for a branched PEG of similar molecular mass. Friction within the polymer layer increased with polymer/RBC ratio and for the linear PEGs was inversely related to molecular mass; friction was greatest for the branched PEG. Our results are consistent with the effects of attached PEGs on RBC aggregation and surface antigenic site masking, and suggest the usefulness of electrophoretic mobility techniques for studies of bound neutral polymers.  相似文献   

18.
The Authors have investigated the structural property of organic shell matrix from Mytilus galloprovincialis by scanning microscopy. The microscopic investigation shows differences between matrix from nacreous layer or argonite and matrix from outer layer or calcite. The first shows a "cavernous" surface; the other instead shows a "smooth" surface. The Authors conclude that probably these differences may influence the different crystallographic arrangement of biocrystals.  相似文献   

19.
Antimicrobial titanium/silver PVD coatings on titanium   总被引:1,自引:0,他引:1  

Background  

Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process.  相似文献   

20.
We report the fabrication of high performance organic solar cells by spray‐coating the photoactive layer in air. The photovoltaic blends consist of a blend of carbazole and benzothiadiazole based donor–acceptor copolymers and the fullerene derivative PC70BM. Here, we formulate a number of photovoltaic inks using a range of solvent systems that we show can all be deposited by spray casting. We use a range of techniques to characterize the structure of such films, and show that spray‐cast films have comparable surface roughness to spin‐cast films and that vertical stratification that occurs during film drying reduces the concentration of PCBM towards the underlying PEDOT:PSS interface. We also show that the active layer thickness and the drying kinetics can be tuned through control of the substrate temperature. High power conversion efficiencies of 4.3%, 4.5% and 4.6% were obtained for solar cells made from a blend of PC70BM with the carbazole‐based co‐polymers PCDTBT, P2 and P1. By applying a low temperature anneal after the deposition of the cathode, the efficiency of spray‐cast solar‐cells based on a P2:PC70BM blend is increased to 5.0%. Spray coating holds significant promise as a technique capable of fabricating large‐area, high performance organic solar cells in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号