首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Na,K-ATPase activity in microsomal fraction isolated from kidneys of winter hibernating ground squirrels was found to be 1.8–2.0-fold lower than that in active animals in summer. This is partially connected with a decrease in Na,K-ATPase protein content in these preparations (by 25%). Using antibodies to different isoforms of Na,K-ATPase α-subunit and analysis of enzyme inhibition by ouabain, it was found that the decrease in Na,K-ATPase activity during hibernation is not connected with change in isoenzyme composition. Seasonal changes of Na,K-ATPase a-subunit phosphory- lation level by endogenous protein kinases were not found. Proteins which could be potential regulators of Na,K-ATPase activity were not found among phosphorylated proteins of the microsomes. Analysis of the composition and properties of the lipid phase of microsomes showed that the total level of unsaturation of fatty acids and the lipid/protein ratio are not changed significantly during hibernation, whereas the cholesterol content in preparations from kidneys of hibernating ground squirrels is approximately twice higher than that in preparations from kidneys of active animals. However, using spin and fluorescent probes it was shown that this difference in cholesterol content does not affect the integral membrane micro-viscosity of microsomes. Using the cross-linking agent cupric phenanthroline, it was shown that Na,K-ATPase in mem- branes of microsomes from kidneys of hibernating ground squirrels is present in more aggregated state in comparison with membranes of microsomes from kidneys of active animals. We suggest that the decrease in Na,K-ATPase activity in kidneys of ground squirrels during hibernation is mainly connected with the aggregation of proteins in plasma membrane.  相似文献   

2.
Several lines of evidence show a close association between plasma membrane Na,K-ATPase and mitochondrial respiration. Extending the observation in human erythrocyte membrane (6), Na,K-ATPase activity has been shown to be elevated in kidney microsomal preparations from protein- and energy-malnourished rats (10). Kidney mitochondrial respiration was studied in these rats under various conditions of assay. Sucrose was used as a modifier of mitochondrial morphology and volume to study its effect on these mitochondria. Mitochondrial state 3 respiration was increased by 35% in protein-deficient rats (P less than 0.02). Vmax(ADP) of state 3 respiration was increased by about 47% in protein- as well as energy-restricted rats. Mitochondria from protein- and energy-deficient rats were more tightly coupled as compared to those from control group. Km apparent for (ADP) and (Pi) were elevated in protein- and energy-malnourished rats. The magnitude of increase was much more in energy-deficient rats. Morphological differences between the mitochondria from two dietary manipulations were reflected in differences in the responses of state 3 respiration, Km(ADP), state 4 respiration, and respiratory control ratios to changing sucrose concentrations. This increase in mitochondrial respiration parallels the increased Na,K-ATPase activity in these rats. Increased Km (ADP and Pi) for mitochondrial respiration are perhaps in response to increased availability of these metabolites in the cytosol. The sucrose effect, in addition, distinguishes the morphological differences in mitochondrial membrane due to protein or energy deficiencies. In conclusion, these results, to a great extent, support an association between the activity of Na,K-ATPase and mitochondrial respiration. The study of mechanism(s) which could contribute to the enhancement of mitochondrial respiration will be of general importance to the understanding of regulation of mitochondrial oxidative phosphorylation, and is of particular interest to us.  相似文献   

3.
Na,K-ATPase is a transmembrane enzyme that creates a gradient of sodium and potassium, which is necessary for the viability of animal cells. The activity of Na,K-ATPase depends on the redox status of the cell, decreasing with oxidative stress and hypoxia. Previously, we have shown that the key role in the redox sensitivity of Na,K-ATPase is played by the regulatory glutathionylation of cysteine residues of the catalytic alpha subunit, which leads to the inhibition of the enzyme. In this study, the effect of reducing agents (DTT, ME, TCEP) on the level of glutathionylation of the alpha subunit of Na,K-ATPase from rabbit kidneys and the enzyme activity has been evaluated. We have found that the reducing agents partially deglutathionylate the protein, which leads to its activation. It was impossible to completely remove glutathionylation from the native rabbit kidney protein. The treatment of a partially denatured protein on the PVDF membrane with reducing agents (TCEP, NaBH4) also does not lead to the complete deglutathionylation of the protein. The obtained data indicate that Na,K-ATPase isolated from rabbit kidneys has both regulatory and basal glutathionylation, which appears to play an important role in the redox regulation of the function of Na, K-ATPase in mammalian tissues.  相似文献   

4.
Very pure, detergent-solubilized Na,K-ATPase from dog or lamb kidneys has been successfully reconstituted at high protein-to-lipid weight ratios. Studies have been conducted to establish the orientation of the Na,K-ATPase molecules in the reconstituted membranes and to assess the functional activity and the conformational state of the reconstituted enzyme. Results indicate that reincorporation of the Na,K-ATPase molecules in the lipid bilayer is unidirectional and that the reconstituted enzyme retains its functional and structural integrity. Two-dimensional crystals have been induced in these preparations by vanadate ions. The arrays, with a dimeric structure in the unit cell, have a morphology similar to that of the crystals that had previously formed in the native membranes. Filtered images show that in projection, the molecule had an asymmetrical mass distribution, which at the resolution of 2.5 nm is identical to that of the earlier crystals. These sheets, although small, represent the first crystals of Na, K-ATPase to be formed by reconstitution. We expect that optimization of the reconstitution and crystallization parameters will lead to larger and better-ordered sheets, suitable for electron crystallography.  相似文献   

5.
The murine renal Na,K-ATPase is resistant to cardiac glycosides. It is not yet known however whether altered active transport is associated with the drug-resistance. To investigate this problem Na,K-ATPases were purified from the outer medulla of both rat and rabbit kidneys and reconstituted identically into liposomes. The Na-stimulation of the Na,K-ATPase activity before reconstitution and of the Na-transport after reconstitution was measured. A Na-defect inherent in the ouabain-resistant rat Na,K-ATPase was discovered indicating a link between the cardiac glycoside sensitivity and the Na-transport.  相似文献   

6.
Polycystin-1 (PC-1) is the product of the PKD1 gene, which is mutated in autosomal dominant polycystic kidney disease. We show that the Na,K-ATPase alpha-subunit interacts in vitro and in vivo with the final 200 amino acids of the polycystin-1 protein, which constitute its cytoplasmic C-terminal tail. Functional studies suggest that this association may play a role in the regulation of the Na,K-ATPase activity. Chinese hamster ovary cells stably expressing the entire PC-1 protein exhibit a dramatic increase in Na,K-ATPase activity, although the kinetic properties of the enzyme remain unchanged. These data indicate that polycystin-1 may contribute to the regulation of Na,K-ATPase activity in kidneys in situ, thus modulating renal tubular fluid and electrolyte transport.  相似文献   

7.
In the course of intermittent cold adaptation (0 degrees C, for 16 weeks) the rats demonstrated an increase in the rate of oxygen consumption by a suspension of kidney pieces. The increase of oxygen consumption by 60% is ouabain-sensitive. Together with the data on Na, K-ATPase activation this indicates the main role of the Na-pump in the increased respiration of the kidneys on cold adaptation.  相似文献   

8.
The effects of carnosine on erythrocyte membrane Na,K-ATPase and isolated enzyme in vitro as well as on membrane Na,K-ATPase activity and lipid peroxidation (LPO) in chronic heart failure (CHF) and acute myocardial infarction (AMI) have been studied. CHF and AMI have been shown to be associated with significant inhibition of the erythrocyte membrane Na,K-ATPase activity and LPO activation. Marked activation of erythrocyte membrane Na,K-ATPase by carnosine in comparison with the isolated enzyme has been established. The ability of carnosine to induce Na,K-ATPase activation and prevent membrane depolarization indicates that the dipeptide may be a useful tool in the pathogenetic therapy of CFH and AMI.  相似文献   

9.
The two cell types in the lens, epithelium and fiber, have a very different specific activity of Na,K-ATPase; activity is much higher in the epithelium. However, judged by Western blot, fibers and epithelium express a similar amount of both Na,K-ATPase alpha and beta subunit proteins. Na,K-ATPase protein abundance does not tally with Na,K-ATPase activity. Studies were conducted to examine whether protein synthesis plays a role in maintenance of the high Na,K-ATPase activity in lens epithelium. An increase of cytoplasmic sodium was found to increase Na,K-ATPase protein expression in the epithelium, but not in the fibers. The findings illustrate the ability of lens epithelium to synthesize new Na,K-ATPase protein as a way to boost Na,K-ATPase in response to cell damage or pathological events. Methionine incorporation studies suggested Na,K-ATPase synthesis may also play a role in day to day preservation of high Na,K-ATPase activity. Na,K-ATPase protein in lens epithelial cells appeared to be continually synthesized and degraded. Experiments with cycloheximide suggest that specific activity of Na,K-ATPase in the lens epithelium may depend on the ability of the cells to continuously synthesize fresh Na,K-ATPase proteins. However, other factors such as phosphorylation of Na,K-ATPase alpha subunit may also influence Na,K-ATPase activity. When intact lenses were exposed to the agonist thrombin, Na,K-ATPase activity was diminished, but the response was suppressed by inhibitors of the Src family of non-receptor tyrosine kinases. Thrombin elicited tyrosine phosphorylation of lens epithelium membrane proteins, including a 100 kDa protein band thought to be the Na,K-ATPase alpha 1 subunit. It remains to be determined whether a tyrosine phosphorylation mechanism contributes to the low activity of Na,K-ATPase in lens fibers.  相似文献   

10.
Na,K-ATPase activity of a plasma membrane fraction obtained from frog skeletal muscles was increased approximately two-fold by exposing muscles to insulin, whereas the addition of insulin to a membrane preparation suspension has no effect on Na,K-ATPase activity. The effect of insulin on Na,K-ATPase activity of whole muscles was specific to insulin and insulin derivatives that had the ability of receptor-binding and was not inhibited by actinomycin D. Insulin also induced a development of Na,K-ATPase activity in muscles whose Na,K-ATPase activity had been blocked by ouabain-pretreating. Such a insulin action was inhibited by monensin. These observations suggest that insulin stimulates the monensin-sensitive intracellular transport of membrane proteins which should be responsible for the increase in Na/K pumping activity.  相似文献   

11.
Diminished Na,K-ATPase expression has been reported in several carcinomas and has been linked to tumor progression. However, few studies have determined whether Na,K-ATPase function and expression are altered in lung malignancies. Because cigarette smoke (CS) is a major factor underlying lung carcinogenesis and progression, we investigated whether CS affects Na,K-ATPase activity and expression in lung cell lines. Cells exposed to CS in vitro showed a reduction of Na,K-ATPase activity. We detected the presence of reactive oxygen species (ROS) in cells exposed to CS before Na,K-ATPase inhibition, and neutralization of ROS restored Na,K-ATPase activity. We further determined whether Na,K-ATPase expression correlated with increasing grades of lung adenocarcinoma and survival of patients with smoking history. Immunohistochemical analysis of lung adenocarcinoma tissues revealed reduced Na,K-ATPase expression with increasing tumor grade. Using tissue microarray containing lung adenocarcinomas of patients with known smoking status, we found that high expression of Na,K-ATPase correlated with better survival. For the first time, these data demonstrate that CS is associated with loss of Na,K-ATPase function and expression in lung carcinogenesis, which might contribute to disease progression.  相似文献   

12.
It has been postulated that a decrease in Na,K-ATPase-mediated ion gradients may be a contributing mechanism to insulin secretion. However, the precise role of the Na,K-ATPase in pancreatic β-cell membrane depolarization and insulin secretion signalling have been difficult to evaluate, mostly because data reporting changes in enzymatic activity have been obtained in cell homogenates or membrane preparations, lacking intact intracellular signalling pathways. The aim of this work was to develop a method to characterize Na,K-ATPase activity in intact pancreatic β-cells that will allow the investigation of putative Na,K-ATPase activity regulation by glucose and its possible role in insulin secretion signalling. This work demonstrates for the first time that it is possible to determine Na,K-ATPase activity in intact pancreatic β-cells and that this is a suitable method for the study of the mechanisms involved in the Na,K-ATPase regulation and eventually its relevance for insulin secretion signalling.  相似文献   

13.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

14.
Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time, the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys-454, -458, -459, and -244. Upon binding of glutathione to these cysteines, the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentrations above 0.5 mm. Deglutathionylation of the α subunit catalyzed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia and was associated with oxidative stress and ATP depletion. S-Glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.  相似文献   

15.
16.
The identical increase of Na, K-ATPase activity is caused by oxidated and reduced forms of noradrenaline, serotonin and dopamine through the synaptosomal activating factors. The synaptosomal inhibiting factor, orthovanadate and calcium ions independently inhibit Na, K-ATPase activity. The inhibition constant (Ki) for vanadate does not change in the presence of EDTA, whereas in the presence of synaptosomal factors regulating the Na, K-ATPase factors, noradrenaline causes drastic increase of Ki for vanadate. It has been concluded, that the data point to the existence of special regulating system of brain synaptosomal Na, K-ATPase.  相似文献   

17.
The Na,K-ATPase has been only partially purified from nervous tissue, yet it is clear that two forms (and +) of the catalytic subunit are present. is a component subunit of the glial Na,K-ATPase, which has a relatively low affinity for binding cardiac glycosides and + has been identified as a subunit of the Na,K-ATPase which has relatively high affinity for cardiac glycosides. The + form may also be sensitive to indirect modulation by neurotransmitters or hormones. The ratio of + / changes in the nervous system during development, and + appears to be the predominant species in adult neurones. Changes in Na,K-ATPase activity have been associated with several abnormalities in the nervous system, including epilepsy and altered nerve conduction velocity, but a causal relationship has not been definitively established. Although the Na,K-ATPase has a pivotal role in Na+ and K+ transport in the nervous system, a special role for the glial Na,K-ATPase in clearing extracellular K+ remains controversial.  相似文献   

18.
Factors regulating the activity of synaptosomal Na, K-ATPase have been found in the cytosol of nerve endings. The activatory effect of the factor increases in the presence of neurotransmitters regardless of their direct action on Na, K-ATPase. Synaptosomal Na, K-ATPase is not sensitive to the factor obtained from the cytosol of kidney tissue, or the cytosolic fraction obtained after sedimentation of microsomes. The effect of inhibiting low molecular ET(S) fraction on Na, K-ATPase activity is not mediated through noradrenaline, dopamine and serotonin as well by the system of secondary messengers. Factor stimulated by neurotransmitters activates the Na, K-ATPase system affecting the phosphorylating intermediates of the enzyme and putting the Na, K-ATPase system in the mode of simultaneous transport of Na and K ions.  相似文献   

19.
The activity of Na,K-ATPase of the rat brain and kidney is 1.5--2-fold as increased during intermittent and prolonged (16 weeks) adaptation to cold, without changes in the enzyme affinity to ATP. It is suggested that adaptive increase in the power of the Na pump, triidothyronine-dependent in the kidneys and triiodothyronine-independent in the brain, ensures elevation in thermal production to body cooling.  相似文献   

20.
1. Na,K-ATPase was extracted from Cavia cobaya kidneys, solubilized with nonionic detergent C12E8 (octaethyleneglycol dodecyl monoether) in mixed lipid-detergent-protein micelles. The Na,K-ATPase specific activity was 30-35 IU/mg protein. 2. The enzyme was reconstituted in vesicles, made of phosphatidylethanolamine and cholesterol: an enhancement of +60% in specific activity was obtained. 3. Two different vesicle-types were carried out: open liposomes (partially organized membranes) and closed liposomes. 4. Proteoliposomes were employed for measuring the modulatory effect of two cardioglycosides: ouabain and digoxin. 5. Inhibition of the Na,K-ATPase activity revealed apparent Ki of 1.25 microM for ouabain and 0.25 microM for digoxin in open liposomes, and apparent Ki of 0.75 microM for ouabain and of 1.75 microM for digoxin in closed liposomes. 6. Maximum enhancement of enzymatic activity was found at concentrations of 5-0.5 nM for ouabain and 5-1 nM for digoxin in open liposomes, and 25-1 nM for both digoxin and ouabain in closed liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号