首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental evidence suggests that innervation can exert a long-term control and modulation on effector cell homeostasis. These trophic influences are known to occur between the motor innervation and skeletal muscles, tissues in which these phenomena have been well studied. A similar picture is also emerging to indicate that smooth muscles may be subjected to a neurotrophic influence. The present paper reviews and presents data obtained after chemical sympathectomy of rat portal vein with 6-hydroxydopamine. Basically three experimental protocols were utilized: 1) studies before and after complete in vitro denervation, using the vessel as its own control; 2) in vivo sympathectomy followed by in vitro studies at various times thereafter; and 3) experiments in which the veins were denervated in vitro, placed in organ culture, and treated with either norepinephrine (NE) or the vehicle. The results indicate that in rat portal vein the sympathetic innervation normally exerts a trophic influence mediated, at least in part, by NE. This evidence is discussed in relation to other smooth muscles insofar as supersensitivity mechanisms and other possible effects triggered by transmitter withdrawal. The discussion is extended to encompass ways by which NE could exert its effects, and the possibility of other trophic factors.  相似文献   

2.
The chemopreventive activity of resveratrol (RSVL) has been demonstrated in several types of cancer. However, its effects and the underling mechanisms remain poorly understood. In this study, we investigated the involvement of the mitogen activated protein kinase (MAPK)/p53 signal transduction mechanism in RSVL-induced growth inhibition using a human osteosarcoma cell line. We demonstrate that RSVL reduces cell viability and growth of SJSA1 osteosarcoma cells. Morphological profiles and 4,6-diamidino-2-phenylindole nuclear staining of RSVL-treated cells indicated marked nuclear fragmentation. Cleavage of the (116-kDa) poly(ADP-ribose) polymerase protein into an 89-kDa fragment (a proapoptotic marker system) was substantially augmented by RSVL treatment. RSVL-dependent growth impairment was preceded by enhanced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 (at Thr202/Tyr204). Likewise, RSVL increased the phosphorylation of p53 tumor suppressor protein (at Ser15). The effects of RSVL on ERKs and on p53 phosphorylation were abrogated by either the MAPK inhibitor PD98059 or the p53 inhibitor pifithrine-alpha. The present study indicates that RSVL antiproliferative effects on osteosarcoma cells are mediated by the activation of the ERKs/p53 signaling pathway and therefore identifies new targets for strategies to treat and/or prevent osteosarcoma.  相似文献   

3.
It has been shown that melatonin regulates uterine function. Our previous studies have demonstrated the presence of melatonin receptors in the rat uterine endometrium, indicating that melatonin may act directly on the uterus. In the present study, the histological localization of the rat uterine melatonin binding was revealed by autoradiography and the molecular subtyping was studied by in situ hybridization in the stromal cells. The signal transduction process and effects of melatonin on stromal cell proliferation was also investigated. Our autoradiograms showed that 2[(125)I]iodomelatonin binding sites were localized in the antimesometrial endometrial stroma. In situ hybridization with specific mt(1) receptor cDNA probe in the primary culture of antimesometrial stromal cells demonstrated the expression of mt(1) receptor mRNAs. Melatonin dose-dependently inhibited forskolin-stimulated cAMP accumulation, which was reversed by pertussis toxin. This indicates that the rat uterine melatonin receptors are negatively coupled to adenylate cyclase via pertussis toxin sensitive G(i) protein. Melatonin also inhibited the incorporation of [(3)H]thymidine in the rat uterine antimesometrial stromal cells, showing that melatonin has an anti-proliferative effect on the uterus. Our results suggest that melatonin may act directly on the mt(1) melatonin receptors in the rat uterine antimesometrial stromal cells to inhibit their proliferation. Its action may be mediated through a pertussis toxin-sensitive adenylate cyclase coupled G(i)-protein.  相似文献   

4.
Molecular and Cellular Biochemistry - The present study is to investigate the effect and mechanism of action of interleukin (IL)-17A and its receptor IL-17RA on non-small cell lung cancer (NSCLC)....  相似文献   

5.
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.  相似文献   

6.
Arsenic trioxide (ATO) has been successfully used to treat leukemia and some solid malignant tumors. Our previous study regarding the effects of ATO on mesenchymal-derived human osteosarcoma MG63 cells showed that heme oxygenase-1 (HO-1) was strongly induced upon treatment with ATO. The present study sought to investigate the effect of silencing HO-1 on the sensitivity of osteosarcoma cells to ATO to determine the potential for therapeutic applications. Small hairpin RNA (shRNA)-mediated interference was used to silence HO-1 in MG63 cells. Viability, apoptosis, and intracellular reactive oxygen species (ROS) of the cells were assessed to evaluate the sensitivity of the cells to ATO as well as the potential mechanisms responsible. shRNA-mediated interference prevented the induction of HO-1, increased cell death, and increased intracellular ROS levels in MG63 cells upon treatment with ATO. Silencing HO-1 increased the susceptibility of MG63 cells to the chemotherapeutic drug ATO by enhancing intracellular accumulation of ROS. Our results suggest that the inhibition of HO-1 could improve the outcome of osteosarcoma treated with ATO.  相似文献   

7.
In normal rats treated with 1,25(OH)2D3 or 24,25(OH)2D3, serum Ca2+, ALP, PRL and GH are significantly altered. In order to study the primary effect of vitamin D3 analogues on target organ function, rat UMR 106 osteosarcoma and GH3 pituitary adenoma cells in monolayer culture were exposed accordingly.Surprisingly, prolonged exposure of these cell lines to physiological levels of either 1,25(OH)2D3 or 24,25(OH)2D3 did not significantly affect the secretory parameters (ALP, PRL or GH) tested. However, 1,25(OH)2D3 exposure significantly reduced PTH- and Gpp(NH)p-elicited AC as well as Gpp(NH)p-stimulated PLC activities in the UMR 106 cells. These changes were accompanied by an increase and decrease in the membrane contents of the G-protein subunits G36 and Gq/11, respectively. In contrast, 24,25(OH)2D3 remained without significant biological effect on these signalling systems despite concomitantly augmented levels of G36. TRH- and Gpp(NH)p-elicited PLC activities in the GH3 cells were significantly reduced by 1,25(OH)2D3 with a concurrent reduction in cellular amounts of Gq/11, however, 24,25(OH)2D3 did not significantly alter any signalling systems nor G-proteins analyzed.It is concluded that the osteoblastic and pituitary cell secretion of ALP, PRL and GH remain unaffected by the presence of 1,25(OH)2D3 and 24,25(OH)2D3, despite distinct alterations in components of G-protein mediated signalling pathways. Hence, other factors like ambient Ca2+ may be responsible for the perturbed secretory patterns of ALP and PRL seen in vitamin D3 treated rats.Abbreviations AC adenylate cyclase - ALP alkaline phosphatase - BGP osteocalcin - BSA bovine serum albumin - DA dopamine - DAG diacylglycerol - GH growth hormone - GHRH growth hormone releasing hormone - Gpp(NH)p guanosine 5-[-imido]triphosphate - G-protein guanine nucleotide-binding regulatory protein - Gs etc. Gs protein -subunit - IP3 inositol 1,4,5 trisphosphate - OAF osteoclast activating factor - PGE2 prostaglandin E2 - PKA & PKC protein kinase A & C - PLC phospholipase C - PRL prolactin - PTH parathyroid hormone - SRIF somatostatin - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide - 25(OH)D3 25 hydroxy vitamin D3 - 1,25(OH)2D3 1·25 dihydroxy vitamin D3 - 24,25(OH)2D3 24,25 dihydroxy vitamin D3  相似文献   

8.
The regenerative capacity of the cholestatic liver is significantly attenuated. Oval cells are hepatic stem cells involved in liver's regeneration following diverse types of injury. The present study investigated the effect of the neuropeptides bombesin (BBS) and neurotensin (NT) on oval cell proliferation as well as on hepatocyte and cholangiocyte proliferation and apoptosis in the cholestatic rat liver. Seventy male Wistar rats were randomly divided into five groups: controls, sham operated, bile duct ligated (BDL), BDL + BBS (30 μg/kg/d), BDL + NT (300 μg/kg/d). Ten days later, alpha-fetoprotein (AFP) mRNA (in situ hybridization), cytokeratin-19 and Ki67 antigen expression (immunohistochemistry) and apoptosis (TUNEL) were evaluated on liver tissue samples. Cells with morphologic features of oval cells that were cytokeratin-19(+) and AFP mRNA(+) were scored in morphometric analysis and their proliferation was recorded. In addition, the proliferation and apoptotic rates of hepatocytes and cholangiocytes were determined. Alanine aminotransferase (ALT) levels and hepatic oxidative stress (lipid peroxidation and glutathione redox state) were also estimated. The neuropeptides BBS and NT significantly reduced ALT levels and hepatic oxidative stress. Both agents exerted similar and cell type-specific effects on oval cells, hepatocytes and cholangiocytes: (a) oval cell proliferation and accumulation in the cholestatic liver was attenuated, (b) hepatocyte proliferation was increased along with a decreased rate of their apoptosis and (c) cholangiocyte proliferation was attenuated and their apoptosis was increased. These observations might be of potential value in patients with extrahepatic cholestasis.  相似文献   

9.
Interferon-alpha (IFN-alpha) is used for biotherapy of neuroendocrine carcinomas. The interferon-lambdas (IL-28A/B and IL-29) are a novel group of interferons. In this study, we investigated the effects of the IFN-lambdas IL-28A and IL-29 on human neuroendocrine BON1 tumor cells. Similar to IFN-alpha, incubation of BON1 cells with IL-28A (10 ng/ml) and IL-29 (10 ng/ml) induced phosphorylation of STAT1, STAT2, and STAT3, significantly decreased cell numbers in a proliferation assay, and induced apoptosis as demonstrated by poly(ADP-ribose) polymerase (PARP)-cleavage, caspase-3-cleavage, and DNA-fragmentation. Stable overexpression of suppressor of cytokine signaling proteins (SOCS1 and SOCS3) completely abolished the aforementioned effects indicating that SOCS proteins act as negative regulators of IFN-lambda signaling in BON1 cells. In conclusion, the novel IFN-lambdas IL-28A and IL-29 potently induce STAT signaling and antiproliferative effects in neuroendocrine BON1 tumor cells. Thus, IFN-lambdas may hint a promising new approach in the antiproliferative therapy of neuroendocrine tumors.  相似文献   

10.
11.
Thujaplicins are tropolone-derived natural products with antiproliferative properties. We recently reported that certain tropolones potently and selectively target histone deacetylases (HDAC) and inhibit the growth of hematological cell lines. Here, we investigated the mechanisms by which these compounds exert their antiproliferative activity in comparison with the pan-selective HDAC inhibitor, vorinostat, using Jurkat T-cell leukemia cells. The tropolones appear to work through a mechanism distinct from vorinostat. These studies suggest that tropolone derivatives may serve as selective epigenetic modulators of hematological cells with potential applications as anti-leukemic or anti-inflammatory agents.  相似文献   

12.
13.
Calcitriol (1,25-dihydroxycholecalciferol), the active form of Vitamin D, is anti-proliferative in tumor cells and tumor-derived endothelial cells (TDEC). However, endothelial cells isolated from normal tissues as cell lines or freshly isolated cells or from implanted Matrigel plugs (MDEC) are relatively resistant. Both TDEC and MDEC express similar amounts of Vitamin D receptor (VDR) protein. Although the VDR from TDEC has higher binding affinity for calcitriol than those from MDEC, VDR in both cell types translocates to the nucleus and transactivates the 24-hydroxylase promoter-luciferase construct. Calcitriol selectively inhibits the growth of TDEC but not MDEC by inducing G(0)/G(1) cell cycle arrest and by promoting apoptosis. This selectivity appears to be related to 24-hydroxylase (CYP24) expression. Calcitriol significantly induced CYP24 expression in MDEC but not in TDEC and inhibition of CYP24 activity in MDEC restores their sensitivity to calcitriol. These findings indicate that the induction of CYP24 expression differs in endothelial cells isolated from different microenvironments (TDEC versus MDEC) and that this distinction contributes to selective calcitriol-mediated growth inhibition in these cell types.  相似文献   

14.
Inhibition of mitochondrial protein synthesis impairs the formation of the 13 polypeptides encoded on the mitochondrial genome. These polypeptides are part of enzyme complexes involved in oxidative phosphorylation. Prolonged inhibition of mitochondrial protein synthesis thus reduces the oxidative phosphorylation capacity which ultimately results in impairment of energy-requiring processes. Via a different mechanism glucocorticoid hormones also decrease the oxidative phosphorylation capacity of, e.g., lymphoid cells. The present study shows that inhibition of mitochondrial protein synthesis influences glucocorticoid-induced responses of lymphoid cells in two opposing manners. (a) It is enhanced after induction in cells with a reduced oxidative phosphorylation capacity resulting from preceding inhibition of mitochondrial protein synthesis. This can be explained by the synergistic effects of glucocorticoids and prolonged inhibition of mitochondrial protein synthesis on energy-producing processes. (b) It is counteracted when mitochondrial protein synthesis is impaired during induction of the response. The latter observation suggests that mitochondrial protein synthesis is involved in the generation of glucocorticoid-induced effects on lymphoid cells.  相似文献   

15.
A study was made of variability of the sensitivity of peripheral blood lymphocytes from different donors to an antiproliferative action of cyclophosphamide and thiophosphamide. A similar degree of the sensitivity was revealed to alkylating agents differing in the action mode, with this degree being independent of the "stimulation index" magnitude.  相似文献   

16.
The potential for personalized cancer management has long intrigued experienced researchers as well as the na?ve student intern. Personalized cancer treatments based on a tumor's genetic profile are now feasible and can reveal both the cells' susceptibility and resistance to chemotherapeutic agents. In a weeklong laboratory investigation that mirrors current cancer research, undergraduate and advanced high school students determine the efficacy of common pharmacological agents through in vitro testing. Using mouse mammary tumor cell cultures treated with "unknown" drugs historically recommended for breast cancer treatment, students are introduced to common molecular biology techniques from in vitro cell culture to fluorescence microscopy. Student understanding is assessed through laboratory reports and the successful identification of the unknown drug. The sequence of doing the experiment, applying logic, and constructing a hypothesis gives the students time to discover the rationale behind the cellular drug resistance assay. The breast cancer experiment has been field tested during the past 5 yr with more than 200 precollege/undergraduate interns through the Gains in the Education of Mathematics and Science program hosted by the Walter Reed Army Institute of Research.  相似文献   

17.
A biosynthetic precursor to rat bone gamma-carboxyglutamic acid protein (BGP) was isolated from warfarin-treated ROS 17/2 osteosarcoma cells by antibody affinity chromatography followed by reverse phase high performance liquid chromatography. Thirty-two residues of its NH2-terminal sequence were determined by gas-phase protein sequence analysis. Comparison of this sequence with the known structure of rat BGP established that the intracellular precursor is a 76-residue molecule of Mr = 9120 that differs from 6000-Da bone BGP in having an NH2-terminal extension of 26 residues. This precursor appears to be generated from the primary translation product by cleavage of a hydrophobic signal peptide and is the probable substrate for gamma-carboxylation by virtue of its accumulation in the presence of warfarin. The putative targeting region for gamma-carboxylation previously identified in the leader sequences of vitamin K-dependent proteins is found in the propeptide portion of the precursor. Since the immunoreactive component secreted by warfarin-treated cells is identical in sequence to the 6000-Da BGP from bone, propeptide cleavage from the precursor is independent of gamma-carboxylation and precedes secretion of BGP from the cell.  相似文献   

18.
19.
1. To assess the influence of nutrient limitation on copper toxicity, periphitic communities from an oligotrophic stream were exposed to copper for six to 12 days with and without the supply of nutrients (mainly P). 2. In contrast to the hypothesis that nutrient cycling in mature biofilms would protect them from Cu toxicity, low and high biomass biofilms did not differ in their physiological response to copper after 6 days of exposure. 3. A clear influence of P‐limitation on copper toxicity was observed. Periphytic communities that were previously fertilised for 18 days were three times more tolerant than control communities indicating that P‐limitation enhanced Cu toxicity and tolerance induction were probably related to the higher P‐availability. In addition, a compensation of Cu toxicity after P‐addition was observed in the long‐term (after 12 days). 4. We conclude that periphyton from oligotrophic streams is more sensitive to copper than periphyton from fertilised streams, and that therefore a higher effect of chronic copper exposure is expected to occur in oligotrophic P‐limited fluvial systems. 5. Extrapolation of our results to the area of study (Catalonia, north‐east of Spain) indicates that while the levels of Cu commonly found in the zone may negatively affect the periphyton from oligotrophic streams, because of the interaction between Cu and P, they are not able to control the growth of nuisance algae which is common under high nutrient conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号