首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Ro 15-1788 and ethyl-beta-carboline-3-carboxylate (beta-CCE) were studied alone and in combination on the behavioral performances of squirrel monkeys. Under one procedure, performances maintained by food were suppressed by electric shock presentation (punishment or "conflict" procedure). Under a second procedure, responding was maintained either by food or electric shock delivery under a 5-min fixed-interval schedule. Doses of beta-CCE between 0.1 and 3.0 mg/kg, i.m., produced graded decreases in punished responding which were reversed by pretreatment with Ro 15-1788 (1.0 - 10.0 mg/kg, i.m.). Low doses of beta-CCE (0.03 - 0.3 mg/kg, i.m.) increased responding of monkeys maintained by shock presentation, but did not affect food-maintained responding; higher doses of beta-CCE decreased responding under both schedules. These effects of beta-CCE are opposite those produced by the benzodiazepines under this procedure. Ro 15-1788 (1.0 mg/kg i.m.) antagonized the effects of beta-CCE, producing a shift to the right in the dose-response curves. These findings provide further support for the view that beta-CCE and Ro 15-1788 produce effects mediated by the same benzodiazepine receptor recognition site.  相似文献   

2.
Ro 15-1788 (10 mg/kg, ip) and CGS 8216 (10 mg/kg, ip) significantly reversed the inhibitory effect of diazepam (5 mg/kg, ip) on electrically induced head-turning in rats. Neither antagonist alone, at the dose level which blocked diazepam, had any intrinsic activity in this model. The specificity of the interaction between CGS 8216 and diazepam was further confirmed by the lack of antagonism by CGS 8216 of muscimol's inhibitory effect on head-turning. These results provide additional evidence that the inhibition of head-turning induced by diazepam is mediated via the benzodiazepine binding site. Furthermore, this model provides a functional expression of the interaction between the benzodiazepine recognition site, the chloride ionophore, and the GABA receptor complex.  相似文献   

3.
The benzodiazepine antagonist properties of Ro 15-1788 were evaluated in rats trained to discriminate between saline and either 1.0 mg/kg of diazepam or 10 mg/kg of pentobarbital in a two-choice discrete-trial shock avoidance procedure. When administered alone, 1.0 mg/kg of diazepam and 10 mg/kg of pentobarbital produced comparable amounts of drug-appropriate responding (> 84%), whether rats were trained to discriminate between diazepam or pentobarbital and saline. Ro 15-1788 (3–32 mg/kg, p.o.), administered 10 min before diazepam or pentobarbital, produced a dose-related blockade of the discriminative effects of diazepam in both groups of rats, but was completely ineffective in blocking the discriminative effects of pentobarbital. The dose-effect curve for the discriminative effects of diazepam was shifted to the right in a parallel fashion 3- and 13-fold by 10 and 32 mg/kg of Ro 15-1788, respectively, indicating that Ro 15-1788 acts as a surmountable, competitive antagonist of diazepam. When administered alone, Ro 15-1788 (32–100 mg/kg, p.o.) produced primarily saline-appropriate responding, although 100 mg/kg of Ro 15-1788 produced drug-appropriate responding in one out of eight rats. When administered orally 30 min after diazepam, Ro 15-1788 (32 mg/kg) completely reversed within 10 min the discriminative effects of diazepam. The blockade of diazepam's discriminative effects by 32 mg/kg of Ro 15-1788 appeared to last at least as long (approximately 2 hr) as the effects of diazepam alone.  相似文献   

4.
Certain pharmacological properties of methyl beta-carboline-3-carboxylate (beta-CCM), a benzodiazepine receptor ligand, have been investigated in chicks. Although beta-CCM has been established previously as an "inverse agonist" of benzodiazepine receptors in rodents, having effects opposite to those of benzodiazepines in a variety of tests, in chicks this compound had a different pharmacological profile. Firstly, in contrast to the overt convulsant action of beta-CCM in other species, beta-CCM (0.05-40 mg/kg) did not produce convulsions by itself in chicks, but it was only proconvulsant. Secondly and most surprisingly, beta-CCM, like diazepam, produced in chicks a sedation which could be blocked by the benzodiazepine receptor antagonist Ro 15-1788. Thus it appears that beta-CCM can function both as an agonist and as an inverse agonist in this animal.  相似文献   

5.
Ro 5-4864 is a 1,4 benzodiazepine lacking typical benzodiazepine behavioural actions, and which has very low affinity for the “classical” CNS benzodiazepine binding sites. However, Ro 5-4864 has very high affinity for the peripheral type of binding site in the periphery and in the brain. Evidence is reviewed that Ro 5-4864 is sedative, convulsant and anxiogenic in rodents. We also describe the effects of combining Ro 5-4864 treatment with benzodiazepines (e.g. diazepam, chlordiazepoxide) and with other drugs that modify the activity of benzodiazepines (Ro 15-1788, CGS 8216, picrotoxin, PK 11195, phenytoin). The binding sites that might be mediating these behavioural actions of Ro 5-4864 are discussed.  相似文献   

6.
M. Morag  M. Myslobodsky 《Life sciences》1982,30(19):1671-1677
A hypothesis was considered that anti-epileptic potency of sodium valproate (VPA) may be associated with its action via the benzodiazepine system. The ability of anti-petit mal drugs to suppress the slow secondary negative wave (SNW) of the visually evoked potential was used as a sensitive electrophysiological “tag” for comparison of VPA (200 mg/kg, i.p.) and Diazepam (5 mg/kg, i.p.) effects. Both drugs induced a profound inhibition of the SNW. Benzodiazepine antagonists Ro 5-3663 (2 mg/kg, i.p.) and Ro 15-1788 (5 mg/kg, i.p.) caused recovery of the SNW amplitude within several minutes of injection. Both antagonists abolished immobility and sedation produced by VPA and Diazepam. The possibility should be considered that therapeutic effects of VPA are mediated through the benzodiazepine receptor coupled to GABA.  相似文献   

7.
J M Witkin  J E Barrett 《Life sciences》1985,37(17):1587-1595
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses.  相似文献   

8.
Male rats were treated with 5 and 10 mg/kg diazepam once daily for 5-30 days. After the drug discontinuation a benzodiazepine receptor antagonist CGS 8216 (2.5-10 mg/kg) induced a behavioural syndrome that might be characterized as an abstinence syndrome. The most typical signs of abstinence were head twitches, myoclonic seizures of forepaws, emotional hyperirritability, increased muscle tone of the tail, sniffing and chewing. These behavioural changes could be observed within 1-1.5 hours after CGS 8216 injection. The abstinence syndrome was induced by repeated CGS 8216 injections for 10-15 days after diazepam discontinuation. Further analysis has shown that that the intensity of abstinence was dependent on the dose and duration of chronic diazepam, as well as on CGS 8216 dose. It is suggested that CGS 8216-induced abstinence syndrome in rats chronically treated with diazepam might be used as a tool for studying the addictive potential of benzodiazepines.  相似文献   

9.
Imidazobenzodiazepine (Ro 15-1788, 5 mg/kg) similarly to a lose dose of apomorphine (0.1 mg/kg) decreased the intensity of footshock aggression in male rats. Ro 15-1788 significantly potentiated the antiaggressive action of apomorphine. Pirenperone (0.01 mg/kg) potentiated the effect of both drugs, whereas haloperidol (0.01 mg/kg) had an opposite action. After long-term treatment with apomorphine and Ro 15-1788 the tolerance to their antiaggressive action developed. This change was in agreement with increased serotonin metabolism in the forebrain. Unlike the action on aggressive behavior, Ro 15-1788 similarly to haloperidol (0.05 mg/kg) decreased the motor depressant effect of apomorphine (0.01 mg/kg) in mice. This effect correlated with the lowered serotonin metabolism after Ro 15-1788 administration. Unlike apomorphine, Ro 15-1788 reversed catalepsy induced by haloperidol (0.25 mg/kg). Administration of pirenperone (0.03 mg/kg) and destruction of serotoninergic terminals by p-chloroamphetamine (2 X 15 mg/kg) significantly potentiated the sedative action of apomorphine. It appears that different action of Ro 15-1788 on behavioral effects of apomorphine is related to different influence of Ro-1788 on serotoninergic processes in the striatum and limbic structures.  相似文献   

10.
The effects of the benzodiazepine antagonist CGS 8216 (2-phenylpyrazolo[4,3-c]quinoline-3(5H)-one) were examined in a thirsty rat conflict test in the presence and absence of pentobarbital. CGS 8216 (2.5-10 mg/kg i.p.) did not affect nonpunished responding, but doses of 5 and 10 mg/kg significantly reduced the rate of punished responding (i.e., the number of 3 second drinking episodes in a "shock" contingency). However, a dose of CGS 8216 which did not significantly alter punished responding (2.5 mg/kg) antagonized the anticonflict actions of pentobarbital. These observations suggest that while high doses of CGS 8216 may elicit an "anxiogenic" response in rodents, lower doses of CGS 8216 antagonize the anticonflict actions of a compound which has been shown to enhance benzodiazepine affinity in vitro. These data imply that the anticonflict actions of pentobarbital may be mediated through benzodiazepine receptors.  相似文献   

11.
The effects of the benzodiazepine receptor antagonist, Ro 15-1788, were examined on analgesia induced by morphine after central (intracerebroventricular, i.c.v., or intrathecal, i.t.) and systemic administration. Analgesia was assessed in squirrel monkeys trained to respond under an electric shock tiltration procedure and in mice using the radiant heat tail-flick test. Central and systemic administration of morphine produced antinociceptive effects that were antagonized by 0.1 mg/kg of naloxone in both species. Ro 15-1788 antagonized the effects of morphine after central (i.c.v. or i.t.) administration but did not alter the effects of morphine given by the systemic route. This novel interaction suggests that Ro 15-1788 may be useful in pharmacologically separating neural substrates subserving opiate analgesia.  相似文献   

12.
Intravenous administration of 3-carboethoxy-beta-carboline (beta-CCE, 10 mg/kg) to rats resulted in multiple bursts of rhythmic waves (2-4 second duration, 5-7 Hz) with amplitudes of 100-250 microV. Pretreatment of animals with the benzodiazepine receptor antagonists CGS 8216 prevented the electroencephalographic seizures elicited by beta-CCE. This dose of CGS 8216 did not produce any electroencephalographic abnormalities when administered alone. These observations suggest that the electroencephalographic seizures elicited by beta-CCE are mediated via an interaction with benzodiazepine receptors. An in vitro study of the rate of degradation of beta-CCE and 3-carbomethoxy-beta-carboline (beta-CCM) in rat plasma demonstrated that the rate of degradation of the former compound was three times more rapid than the latter. These observations, taken together with previous studies demonstrating that parenteral administration of beta-CCM elicits tonic and clonic seizures, suggests that pharmacokinetic factors may be involved in defining the pharmacologic profile of beta-carboline-3-carboxylic acid esters.  相似文献   

13.
Five pigeons were trained to discriminate IM injections of oxazepam (4.0 mg/kg) from vehicle with responding maintained under a fixed-ratio 30 schedule of food delivery. Under test conditions, responding increased in a dose-dependent manner in all pigeons after the administration of other benzodiazepines including diazepam (0.01-1.0 mg/kg), temazepam (0.01-3.0 mg/kg), halazepam (0.1-56.0 mg/kg), and midazolam (0.1-1.0 mg/kg) as well as the barbiturate pentobarbital (2.0-8.0 mg/kg) and the non-benzodiazepine anxiolytic CL 218,872 (1.0-8.0 mg/kg). At the higher doses of each of these compounds, over 80% of responding occurred on the oxazepam-appropriate key. Cocaine (0.5-4.0 mg/kg), bupropion (3.0-56.0 mg/kg) and nortriptyline (3.0-56.0 mg/kg) failed to substitute for oxazepam even at doses that decreased rates of responding. The discriminative stimulus (DS) effects of the lowest doses of oxazepam and CL 218,872 that produced 100% drug-appropriate responding were blocked by the benzodiazepine antagonist Ro 15-1788. This antagonism was reversed by increasing the dose of the agonists. The DS effects of diazepam were antagonized partially by Ro 15-1788 (3 of 5 pigeons), and the antagonism was reversed by higher doses of diazepam in two of these pigeons. The DS effects of pentobarbital were antagonized by Ro 15-1788 in 2 of 5 pigeons, but the blockade was not reversed by higher pentobarbital doses.  相似文献   

14.
Monoclonal Antibodies to Benzodiazepines   总被引:1,自引:0,他引:1  
Four hybridoma lines secreting monoclonal antibodies to benzodiazepines were produced after BALB/c mice were immunized with a benzodiazepine-bovine serum albumin conjugate. The monoclonal antibodies were purified from ascites fluids, and their binding affinities for benzodiazepines and other benzodiazepine receptor ligands were determined. These antibodies have very high binding affinities for diazepam, flunitrazepam, Ro5-4864, Ro5-3453, Ro11-6896, and Ro5-3438 (the KD values are in the 10(-9) M range). However, these antibodies have low affinities for the benzodiazepine receptor inverse agonists (beta-carbolines) and antagonists (Ro15-1788 and CGS-8216).  相似文献   

15.
In experiments with audiogenic seizures in DBA/2 mice, we observed that several socalled benzodiazepine receptor antagonists exhibited either anticonvulsive (Ro 15-1788, PrCC) or proconvulsive (FG 7142, beta-CCE, CGS 8216) effects at high receptor occupancy (17-85%), as compared to benzodiazepines and DMCM which had anticonvulsive and proconvulsive actions, respectively, at very low receptor occupancy (less than 10%). Sensitive distinction between benzodiazepine receptor ligands with low anticonvulsive efficacy (partial agonists) and ligands with low proconvulsive, and maybe anxiogenic, efficacy (partial inverse agonists) can thus be obtained in sound seizure susceptible mice.  相似文献   

16.
Paul D. Thut 《Life sciences》1977,21(3):423-432
Mice were trained to avoid foot shock by turning a drum mounted in the wall of a behavioral chamber. L-DOPA (178 to 320 mg/kg i.p.) and D-DOPA (320 to 1000 mg/kg, i.p.) but not L-3-0-methyl-DOPA (178 to 560 mg/kg, i.p.) significantly reduced the number of responses made by the animals. Pretreatment with Ro. 4-4602 (50 mg/kg, i.p.), a peripheral DOPA-decarboxylase inhibitor, enhanced the depressant effect of L-DOPA but not that of D-DOPA. Inhibition of central DOPA-decarboxylase (Ro. 4-4602, 500 mg/kg, i.p.) partially reduced the depressant effect of L-DOPA but not that of D-DOPA These results suggest that only part of the depressant action of L-DOPA is due to its central decarboxylation.  相似文献   

17.
Rats (N = 8) were trained to discriminate the stimulus properties of the potent benzodiazepine (BZ) receptor inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) from saline in a two-lever operant task. The initial training dose of DMCM was 0.4 mg/kg at which the discrimination developed slowly; increasing the dose to 0.8 mg/kg resulted in rapid acquisition. However, since convulsions eventually developed during further training (sensitization), the training dose was finally individualized below the convulsive threshold (0.4-0.7 mg/kg). The DMCM cue was mimicked by FG 7142 (10 mg/kg), a non-convulsant anxiogenic beta-carboline, by pentylenetrazol (20-30 mg/kg), and by the GABA antagonist bicuculline (2 mg/kg). The DMCM cue was not, or marginally, blocked by diazepam (2.5 mg/kg) or pentobarbital (10-15 mg/kg). Furthermore, the BZ receptor antagonists CGS 8216 (2.5 mg/kg), ZK 93426 (20 mg/kg), and Ro 15-1788 (20-80 mg/kg) also did not, or only marginally, block the DMCM cue. However, the receptor antagonists (alone) substituted for DMCM although Ro 15-1788 was less effective. The partial BZ receptor agonist ZK 91296 (25 mg/kg), which is structurally similar to DMCM, blocked completely the DMCM stimulus effect. THIP (4 mg/kg) did not block the DMCM cue. To explain these results, we suggest that the repeated DMCM treatment, necessary for maintaining the discrimination, shifts the balancing point ("set-point") for positive (i.e., BZ-like) agonist efficacy versus inverse agonist efficacy, towards inverse action. This hypothesis was supported by the finding of an enhanced ability of GABA to reduce 3H-DMCM binding to cortical neuronal membranes of animals treated chronically with DMCM in a regimen similar to that used to maintain the DMCM discrimination. Furthermore, this treatment did not affect baseline 3H-DMCM binding, baseline or GABA stimulated 3H-diazepam binding, or 35S-TBPS binding (to chloride channels).  相似文献   

18.
A novel beta-carboline with benzodiazepine-like properties has recently been synthesized. We compared the effect of the i.v. administration of this drug, ZK 93423, with diazepam on the activity of nigral pars reticulata neurons which are known to be very sensitive to the inhibitory effect produced by GABA-mimetics and benzodiazepines. ZK 93423 (0.05-1.0 mg/kg) inhibited reticulata cells in a dose-related manner up to the cessation of their activity. Since the maximal rate-inhibition elicited by diazepam (1.0 mg/kg) was some 55% of baseline, ZK 93423 showed a much greater potency. Moreover, the firing depression by ZK 93423 was prevented and reversed by two benzodiazepine receptor antagonists: Ro15-1788 and ZK 93426. However, the dosage of Ro15-1788 required for these actions was at least five times higher than that for the blockade of the diazepam effect. The results indicate that the beta-carboline agonist ZK 93423 decreases the activity of reticulata neurons more effectively than diazepam.  相似文献   

19.
1. Injections of carrageenin (1,25 mg/kg i.v.) from the 1st to the 3rd day and then each 2nd or 3rd day inhibited paw swelling in adjuvant arthritis of the rat during the time of treatment. Injections from the 11th to the 15th day were ineffective. The level of plasma kininogen was slightly decreased but the total complement serum level was significantly lowered. 2,5 and 3 mg carrageenin/kg respectively were toxic after repeated injections. After a single administration the levels of plasma kininogen and of total serum complement were decreased by 50% although paw swelling was not affected. 2. Pentosane polysulfoester (25 mg/kg i.v.) did not influence paw swelling despite daily administration from the 1st to the 17th day. Heparin (10 000 IE/kg i.v.) was likewise ineffective. 3. Single or repeated injections of compound 48/80 (0,125-0,5 mg/kg i.v.; 1-5 mg/kg i.p.; 3-6 mg/kg s.c.), reserpine (0,2 mg/kg i.p.), cyproheptadine (5 mg/kg i.v.), bromolysergic acid diethylamide (2 x 2 mg/kg i.v.) or metiamide (10 mg/kg i.v.) were without effect on paw swelling. Neither did compound 48/80 effect the complement serum level. 4. Daily administration of chloropromazine (4-10 mg/kg p.o.) or of promethazine (10-15 mg/kg s.c. or p.o.) inhibited paw swelling in the first phase of adjuvant arthritis but not in the second one. 5. The soybean trypsin inhibitor (15 mg/kg i.v.) inhibited paw swelling significantly up to the 4th day, the Kunitz inhibitor (25 000 E/kg i.v.) was ineffective. 6. The content of prostaglandin E of the inflamed paws was increased threefold in both phases of arthritis. The results are discussed with regard to the putative role of mediators of inflammation (histamine, serotonin, kinins, prostaglandins, lysosomal enzymes, lymphokines, complement).  相似文献   

20.
H E Shannon  S L Davis 《Life sciences》1984,34(26):2589-2596
The benzodiazepine antagonist properties of CGS8216 were evaluated in rats trained to discriminate between saline and 1.0 mg/kg of diazepam in a two-choice, stimulus-shock termination procedure. CGS8216 (0.3 to 100 mg/kg) administered alone, either s.c., p.o. or i.p., occasioned only saline-appropriate responding. When administered concomitantly with a constant 1.0 mg/kg dose of diazepam, CGS8216 produced dose-related decreases in drug-appropriate responding. CGS8216 was most potent by the i.p. route, and approximately tenfold less potent by the oral route. CGS8216 was dermatotoxic after s.c. administration. CGS8216 i.p. had a long duration of action. A dose of 30 mg/kg completely antagonized the discriminative effects of the 1.0 mg/kg training dose of diazepam when the antagonist was administered 8 hr before the start of the test session. In order to determine the type of antagonism by CGS8216, the dose-effect curve for diazepam was redetermined in the presence of varying doses of CGS8216 (0.3 to 3.0 mg/kg, i.p.). CGS8216 produced a dose-related rightward shift in the diazepam dose-effect curve, but also decreased the slope and appeared to decrease the maximal effect. These results are consistent with the interpretation that CGS8216 antagonizes diazepam in a noncompetitive manner. It may do so because either it interacts with a subpopulation of benzodiazepine receptors, it functions as a pseudo-irreversible antagonist due to its high affinity, or because it is an antagonist with agonist properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号