首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of water on enzyme (protein) hydration and catalytic efficiency of enzyme molecules in organic solvents have been analyzed in terms of the thermodynamic activity of water, which has been estimated by the NRTL or UNIFAC equations. When the amount of water bound to the enzyme was plotted as a function of water activity, the water adsorption isotherms obtained from the water-solvent liquid mixtures were similar to the reported water-vapor adsorption isotherms of proteins. The water adsorption of proteins from the organic media was not significantly dependent on the properties of the solvents or the nature of the proteins. It is also shown that there is a linear relationship between the logarithm of the enzyme reaction rate and water activity. However, the dependence of the enzyme reaction rate on water activity was found to be different depending on the properties of the solvent. The relationship between water activity and other solvent parameters such as solvent hydrophobicity and the solubility of water in the solvent is also discussed.  相似文献   

2.
The effect of plant water potential on the activity of indoleacetic acid oxidase was examined. It was found that with increasing plant water deficit the activity of indoleacetic acid oxidase increased. Higher activies of this enzyme are known to be associated with older tissues and lower endogenous auxin levels. It is suggested that while water stress may adversely affect a variety of physiological processes, increases in the activity of indoleacetic acid oxidase may provide plants with a drought adaption mechanism.  相似文献   

3.
A three-dimensional solubility parameter approach to nonaqueous enzymology   总被引:1,自引:0,他引:1  
Widespread commercial application of enzymes as catalysts for specialty or commodity chemical synthesis will require their use in nonaqueous systems. While a number of non-aqueous enzyme applications have been demonstrated, the lack of useful rules for predicting enzyme-solvent interactions has hindered the development of this technology. Both Hildebrand and solvent hydrophobicity (octanol-water partition coefficient) parameters have been used previously to correlate and predict enzyme activity in nonaqueous systems, with some success, but any single-parameter approach is inherently limited in its ability to reflect the spectrum of possible enzyme-solvent interactions. Therefore, this study evaluates the three-dimensional solubility parameter space, as proposed by Hansen, to correlate and predict enzyme activity in microaqueous, miscible, and biphasic nonaqueous systems. Preliminary results suggest that Hansen parameters may be useful for correlating nonaqueous enzyme activity, and that the dispersive and polar parameters may be disproportionately important in single-phase microaqueous systems. The Hansen hydrogen-bonding parameter appears to be the only parameter yet evaluated capable of correlating the water requirement for enzyme activity in microaqueous systems, suggesting that water affects protein structure through enthalpic rather than entropic processes in nonaqueous systems. Insufficient data are available for miscible and biphasic systems, but it is proposed that enzyme activity may correlate with the average solubility parameters of miscible systems and of the aqueous phase in biphasic systems.  相似文献   

4.
Fang Y  Huang XJ  Chen PC  Xu ZK 《BMB reports》2011,44(2):87-95
Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.  相似文献   

5.
Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.  相似文献   

6.
Although there are varying estimates as to the degree of enzyme hydration required for activity, a threshold value of ca. 0.2 g of water per gram of protein has been widely accepted. The evidence upon which this is based is reviewed here. In particular, results from the use of gas-phase substrates are discussed. Results using solid-phase enzyme-substrate mixtures are not altogether in accord with those obtained using gas-phase substrates. The use of gaseous substrates and products provides an experimental system in which the hydration of the enzyme can be easily controlled, but which is not limited by diffusion. All the results show that increasing hydration enhances activity. The results using gas-phase substrates do not support the existence of a critical hydration value below which enzymatic activity is absent, and suggest that enzyme activity is possible at much lower hydrations than previously thought; they do not support the notion that significant hydration of the surface polar groups is required for activity. However, the marked improvement of activity as hydration is increased suggests that water does play a role, perhaps in optimizing the structure or facilitating the flexibility required for maximal activity.  相似文献   

7.
T. Galliard  S. Dennis 《Phytochemistry》1974,13(9):1731-1735
Characterization of reaction products showed that an enzyme (lipolytic acyl hydrolase) isolated from potato tubers could act on endogenous substrates as a galactolipase (E.C. 3.1.1.26), lysophospholipase (E.C. 3.1.1.5) or a ‘phospholipase B’ but not as a lipase (E.C. 3.1.1.3). The affinity of the enzyme for methanol as acyl acceptor (acyl transferase activity) was higher than its affinity for water (acyl hydrolase activity). The nomenclature of acyl hydrolases in plants is discussed.  相似文献   

8.
The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed.  相似文献   

9.
Enzymatic acrylation is a process of potentially strong interest to the chemical industry. Direct esterification involving acrylic acid is unfortunately rather slow, with inhibition phenomena appearing at high acid concentrations. In the present study the acrylation of 1-octanol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was shown to be as much as an order of magnitude faster when ethyl acrylate served as the donor of the acrylic group. Water activity is a key parameter for optimizing the rate of ester synthesis. The optimum water activity for the esterification of octanol by acrylic acid was found to be 0.75, that for its esterification by propionic acid to be 0.45 and the transesterification involving ethyl acrylate to be fastest at a water activity of 0.3. The reasons for these differences in optimum water activity are discussed in terms of enzyme specificity, substrate solvation, and mass transfer effects.  相似文献   

10.
One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.  相似文献   

11.
Alkaline phosphatase activity in the intertubular tissue of the testes of the domestic fowl was examined using an ultracytochemical technique based on the lead capture method. In the interstitial tissue, the Leydig cells, transitional cells and the fibroblasts displayed enzyme activity on their cell membranes. Vacuoles located in the transitional cells were lined by reaction products of enzyme activity, whereas the vacuoles representing extracted lipid droplets and present mainly in the Leydig cells were free of enzyme activity. In the peritubular tissue the cell processes of fibroblasts showed enzyme activity on the cell membranes and in pinocytotic vesicles. Cell processes lying adjacent to blood vessels showed pronounced activity. In the blood vessel itself some activity was present in the basement membrane and the endothelium. The surface of the red blood cell showed moderate activity. The possible role of alkaline phosphatase in the transfer of hormone from the Leydig cells to the seminiferous tubules and from the seminiferous tubules to the interstitium is discussed. The myoid cells and their processes were devoid of enzyme activity.  相似文献   

12.
A triple system (inverse micellae) that simulates the membrane environment of the enzyme was studied. Inverse micellae were obtained using anionic (aerosol OT), synthetic (Brij 56), and natural (lecithin) surfactants. It was found that upon inclusion of an enzyme into inverse micellae, its activity can be regulated by changing the structure and nature of the surfactant matrix. It was shown that enzyme activity in micellar environment is much higher than in water solution. Moreover, the enzyme solubilized in inverse micellae (acid phosphatase) shows a superactivity. It was found that surfactants specifically interact with solubilized enzyme, and the activity of the enzyme is inversely proportional to surfactant concentration. The mechanisms of viscotropic regulation of enzyme activity are discussed.  相似文献   

13.
Enzymes are fluctuating particles in thermal equilibrium with their solvent environment. A variety of models of enzyme action have postulated selective excitation of enzyme vibrational modes or triggering of correlated motion of catalytic groups through collisions with solvent particles as the basis of catalytic activity. Solvent composition and structure are expected to influence such interactions. Solutes such as p-dioxane, t-butanol, and tetraalkylammonium chlorides are known to be strong perturbants of the structure of water. However, when the kinetic parameters of two enzymes, carboxypeptidase A and alpha-chymotrypsin, were examined carefully in aqueous mixtures containing these solutes, no significant influence of solvent structure or mass composition on the catalytic rate constant was found. The results indicate, furthermore, that, within the low viscosity limit, fluctuations in enzyme structure that are responsible for activated processes in the catalytically rate limiting step appear not to be significantly influenced by dynamic processes in the bulk solvent.  相似文献   

14.
Effects of ozone and/or drought stresses on phosphoenolpyruvate carboxylase (PEPc, EC 4.1.1.31) regulation in Pinus halepensis Mill. needles were assessed over 3 months in controlled conditions. Whereas moderated water stress applied to Aleppo pine had no effect on PEPc activity compared to the control, which was probably related to the high tolerance of this species to drought, ozone stress induced a dramatic increase of PEPc activity in pine needles. This stimulation of the anaplerotic pathway could provide substrates to repair processes, well known for being enhanced upon ozone exposure. The ozone-increased PEPc activity was related, to a certain extent, to an increase in protein and mRNA levels. The possible role of the stimulation of the phosphorylation status of the enzyme in the increased PEPc activity under ozone was also investigated. Following the demonstration of the existence of the phosphorylation site at the N terminal part of Aleppo pine PEPc, it was shown that, under ozone treatment, the light/dark PEPc activity ratio and the Ki (malate) for PEPc were increased. This strengthens the hypothesis of an ozone-related post-translational process, which could be part of an adaptation of the plants to prolonged stress. When ozone and water stress were applied in combination, the enhancement in PEPc activity was only related to changes in gene expression. This difference in PEPc regulation, compared to the effect of single stress, could be the consequence of the specific action of each stress on the enzyme. This study brings new insights into the regulation of PEPc in a C3 plant, Aleppo pine under these stresses. A different regulatory mechanism of PEPc is occurring according to the stress. The physiological implications of the increase in PEPc activity in response to ozone and/or water stress are discussed.  相似文献   

15.
Alanine aminotransferase has been studied in various nervous tissues during the postnatal development of the rat. At birth the enzyme activity was low and showed similar levels in all tissues studied. In the hippocampal formation and in the cerebellum which are supposed to be endowed with glutamatergic structures, the enzyme activity increased significantly during the postnatal development. These results contrast markedly with dorsal root ganglia and superior cervical ganglia, in which glutamatergic transmission processes are obviously absent. In these peripheral ganglia the time course of the enzyme activity persisted on a very low level after birth. The participation of alanine aminotransferase in forming of transmitter glutamate is discussed.  相似文献   

16.
Using laser Raman spectroscopy, we are able to study conformational changes that occur as previously-dried hen egg-white lysozyme is sequentially rehydrated. Parallel n.m.r. exchangeability studies enable us to monitor flexibility changes also during this rehdyration. The results are consistent with a general loosening up of the protein at a water content of ~0.08 g water/g protein, followed by (probably small) local conformational changes. The enzyme regains its activity only after both these processes have gone to completion; thus these solvent-related changes may be necessary before activity can recommence.  相似文献   

17.
The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed.  相似文献   

18.
Several substrates and roles have been proposed for D-amino acid oxidase (E.C. 1.4.3.3.); however, there is no proof that they possess the required characteristics to account for the ubiquity, large amounts and great activity of the enzyme as found in diverse cells and tissues. Based on the similar stereoposition of identically charged atoms and lateral side chain (R) with respect to the alpha-hydrogen atoms in beta-sheet conformation and in D-amino acids, it is proposed that its substrates may include several membrane-related proteins, partially in beta-sheet conformation, whose alpha-hydrogen atoms would be the real object of D-amino acid oxidase catalysis. A monooxygenase-like enzymatic activity of D-amino acid oxidase with these novel substrates is considered, for which the final products are hypothesized to be protein alpha-carbon hydroxyls resulting from the incorporation of one atom of oxygen into the substrate, the other being reduced to water. Alternatively, it is also proposed that D-amino acid oxidase (and possibly other monooxygenase enzymes) would have a hydroperoxide-synthetase activity. In this case, protein alpha-carbon hydroperoxide and not water, but another reduced molecule, would be the final products. The new enzymatic performances of D-amino acid oxidase and the possible role of its potential final products in redox and other biochemical processes are discussed.  相似文献   

19.
The present work is aimed to show the effects of environmental parameters such as temperature, pH, ionic strength, and sodium nitrate on enzyme activity of a LiP Isoenzymes Mixture (LIM) obtained from an immobilized culture of Phanerochaete chrysosporium. LIM enzyme stability was also evaluated. The results are discussed in detail and a comparison with literature data is carried out. LIM showed high activity at pH 3.0 in the temperature range 30 to 40°C, it is able to catalyze oxidation reactions at acid pH (2.5<pH<6) and over a wide range of temperatures (25 to 60°C). Ionic strength below 0.2?M had no effect on enzyme activity at pH 4.7 and 39°C. An evaluation of the time decay constant of LIM activity under a specific combination of parameters was also conducted. Finally, an LIM activity and durability map shows the optimal working conditions that might be suitable for its practical application in waste bioremediation processes.  相似文献   

20.
Enzymes are deactivated by different ways to an inactive state, which is a major constraint in the development of biotechnological processes. Understanding the complex process of enzyme deactivation will be helpful in enhancing the feasibility of many biological processes. This paper mainly deals with the different ways by which enzymes are inactivated, which includes the role of thermodynamics in deactivation. Different models namely, unified deactivation theory, single exponential model, rapid equilibrium model, isozyme model and bacterial contamination model used to describe the complex deactivation processes are also discussed in this communication. The complete understanding of deactivation process is very essential in commercialization because enzyme activity and stability of the enzyme play a critical role in economics of biotechnological processes. Activity and stability of the enzyme are conflicting properties and trade-off between these factors must be considered in the selection and design of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号