首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between chloroplast membranes and their microenvironment within artificial matrices (albumin-glutaraldehyde matrix, polyurethane foam) where investigated. Particularly, the influence of a high-ionic-strength medium (0.75 M potassium citrate) on the stability of the photosynthetic ferricyanide reduction by immobilized thylakoids has been studied. A method of data analysis based on a nonlinear identification method combined with the numerical integration of the equation of the transient state of the continuous stirred tank reactor (CSTR) is proposed to estimate the actual degradation of the photosynthetic electron transfer. A statistical analysis achieved on the parameter values has allowed a quantitative assessment of the global behavior of immobilized chloroplast membranes. From the mathernatical analysis of the experimental data, we demonstrate that citrate used in the reaction media prevents the photoinactivation of the electron transfer chain whatever the nature of the matrix or the type of the reactor. The use of an albumin-glutaraldehyde matrix or an open reactor during experiments also has allowed a better stabilization of the photosystems under operational conditions.  相似文献   

2.
An immobilized chloroplast film, prepared by immobilizing spinach chloroplasts in 2 wt% agar gel, was attached to a SnO2 optically transparent electrode to obtain the immobilized chloroplast film electrode. The immobilized chloroplast film electrode worked as a photoanode under illumination in the presence of methyl viologen, which was an electron carrier from chloroplasts to the SnO2 optically transparent electrode. Water photolysis for producing hydrogen by a photoelectrochemical cell using the immobilized chloroplasts film electrode was successfully achieved. A smooth platinum electrode was used as a cathode to produce hydrogen. The pH and temperature of the anolyte were kept at 7.8 and 25°C. Optimizations of the concentrations of methyl viologen and chlorophyll in the immobilized chloroplast film were studied. The optimum thickness for the immobilized chloroplast film was about 0.8 mm. The immobilized chloroplasts had higher storage stability than that of isolated chloroplasts and they retained more than 50% of the initial activities of photosystem I and photosystem II after 10 days when they were stored at 4°C in the dark. It was conceived from the relationship between the photocurrent and the photosystem I and II activities that the main cause for the decrease in the photocurrent was the photochemical inactivation of photosystem II.  相似文献   

3.
Frog epidermis tyrosinase has been immobilized on Enzacryl-AA (a polyacrylamide-based support) and CPG(zirclad)-Arylamine (a controlled pore glass support) in order to stabilize the tyrosine hydroxylase activity of the enzyme; in this way, the immobilized enzyme could be used to synthesize L-dopa from L-tyrosine. The activity immobilization yield Y(IME) (act) (higher than 86%), coupling efficiency (up to 90%), storage stability (no loss in 120 days), and reaction stability (t(1/2) was higher than 20 h in column reactors) were measured for tyrosinase after its immobilization. The results showed a noticeable improvement (in immobilization yield, coupling efficiency, and storage and operational stabilities) over previous reports in which tyrosinase was immobilized for L-dopa production. The activity and stability of immobilized enzyme preparations working in three different reactor types have been compared when used in equivalent conditions with respect to a new proposed parameter of the reactor (R(p)), which allows different reactor configurations to be related to the productivity of the reactor during its useful life time. The characteristic reaction inactivation which soluble tyrosinase shows after a short reaction time has been avoided by immobilization, and the stabilization was enhanced by the presence of ascorbate. However, another inactivation process appeared after a prolonged use of the immobilized enzyme. The effects of reactor type and operating conditions on immobilized enzyme activity and stability are discussed.  相似文献   

4.
Biocatalyst inactivation is inherent to continuous operation of immobilized enzyme reactors, meaning that a strategy must exist to ensure a production of uniform quality and constant throughput. Flow rate can be profiled to compensate for enzyme inactivation maintaining substrate conversion constant. Throughput can be maintained within specified margins of variation by using several reactors operating in parallel but displaced in time. Enzyme inactivation has been usually modeled under non-reactive conditions, leaving aside the effect of substrate and products on enzyme stability. Results are presented for the design of enzyme reactors under the above operational strategy, considering first-order biocatalyst inactivation kinetics modulated by substrate and products. The continuous production of hydrolyzed-isomerized whey permeate with immobilized lactase and glucose isomerase in sequential packed-bed reactors is used as a case study. Kinetic and inactivation parameters for immobilized lactase have been determined by the authors; those for glucose isomerase were taken from the literature. Except for lactose, all other substrates and products were positive modulators of enzyme stability. Reactor design was done by iteration since it depends on enzyme inactivation kinetics. Reactor performance was determined based on a preliminary design considering non-modulated first-order inactivation kinetics and confronted to such pattern. The new pattern of inactivation was then used to redesign the reactor and the process repeated until reactor performance (considering modulation) matched the assumed pattern of inactivation. Convergence was very fast and only two iterations were needed.  相似文献   

5.
To study the biophotolytíc processes involved in the production of hydrogen gas the photosynthetic material of isolated chloroplast membranes was first stabilized. This was achieved by immobilization in a serum albumin-glutaraldehyde matrix. Some kinetic data of the photochemical reactions carried out in closed and continuous flow reactor systems have been investigated. The use of a CSTR chemostat enabled the functional stability of the immobilized photosystems to be examined.  相似文献   

6.
Fluorescence and photoacoustic spectroscopy of immobilized thylakoids   总被引:1,自引:0,他引:1  
The O(2) evolution activity of immobilized chloroplast membranes in different environments (albumin-glutaraldehyde matrix, urethane polymer and alginate beads) is presented. As previously shown, the stability of photosystem II (PS II) of lettuce thylakoids appears to be increased by the immobilization process. For understanding such stability, some spectral investigations have been made about the energy distribution between the immobilized photosystems. The low-temperature (77 K) fluorescence emission and photoacoustic spectroscopy are well adapted to solid particle studies. Especially, it has been shown that the fluorescence ratio (F(735)/F(695)) and photoacoustic ratio (PA(676)/PA(440)) are good indicators of the functional level of native and immobilized thylakoids. Such ratios are also given after storage and after continuous illumination conditions. Some results about the role played by glutaraldehyde (in the case of albumin-glutar-aldehyde matrix) in the stabilization process are also reported.  相似文献   

7.
The stability of immobilized maltotetraose (G(4))-forming amylase (1,4-alpha-D-glucan maltoteraohydrolase, EC 3.2.1.60) from Pseudomonas stutzeri was investigated in both batch and continous processes. The inactivation process of the immobilized enzyme seemed to obey first-order kinetics, and the immobilized enzyme became more stable when coexisting with 20-30 wt % substrate and calcium ions. From intensive studies on the operational stability in the continuous process, the apparent half-life of G(4) productivity in a constant-flow system was mainly affected by the reaction temperature, substrate concentration, and initial immobilized enzyme activity. A new factor, immobilized enzyme stability factor f(s), was proposed to evaluate the half-life of the immobilized enzyme system.  相似文献   

8.
Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.  相似文献   

9.
Preparations of galactosooxidase (EC 1.1.3.9) immobilized by activated aminorganosilica have been used to study potassium ferricyanide and bivalent copper ions on the enzyme activity and stability in continuous reactor under pulse conditions. Introduction of potassium ferricyanide is shown to activate the enzyme and inconsiderably affecting its stability with the substrate absent and inducing inactivation of galactosooxidase in the process of catalytic reaction. Cu2+ ions, exerting no effect on the activity of immobilized galactosooxidase, evoke the enzyme inactivation in the process of catalysis.  相似文献   

10.
ABSTRACT:?

Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzymecatalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.  相似文献   

11.
脂肪酶的固定化及其性质研究   总被引:4,自引:0,他引:4  
曹国民  盛梅 《生物技术》1997,7(3):14-17
采用吸附与交联相结合的方法国定化脂肪酶,研究了脂肪酶固定化的工艺条件,并考察了固定化脂肪酶的催化性能和稳定性。试验结果表明,WA20树脂固定化脂肪酶的最适条件是:酶液pH7.0、给酶量300IU/g树脂、固定时间8h,所得固定化脂肪酶的活力约为165IU/g树脂;固定化酶稳定性较高,在冰箱内贮存6个月活力没有下降,操作半衰期约为750h,而未用戌二醛文联的固定化脂肪酶操作半衰期仅约290h;固定化脂肪酶催化橄榄油水解的最适条件是:PH8.0、温度55℃、底物浓度60%(V/V)、搅拌转速500r/m。  相似文献   

12.
We have studied the turnover of an abundant chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase/oxygenase), in plants (Spirodela oligorrhiza and Triticum aestivum L.) and algae (Chlamydomonas reinhardtii and C. moewusii) induced to senesce under oxidative conditions. Rbu-P2 carboxylase/oxygenase activity and stability in vivo were found to be highly susceptible to oxidative stress, resulting in intermolecular cross-linking of large subunits by disulfide bonds within the holoenzyme, rapid and specific translocation of the soluble enzyme complex to the chloroplast membranes, and finally protein degradation. The redox state of Cys-247 in Rbu-P2 carboxylase/oxygenase large subunit seems involved in the sensitivity of the holoenzyme to oxidative inactivation and cross-linking. However, this process did not drive membrane attachment or degradation of Rbu-P2 carboxylase/oxygenase in vivo. Translocation of oxidized Rbu-P2 carboxylase/oxygenase to chloroplast membranes may be a necessary step in its turnover, particularly during leaf senescence. Thus, processes that regulate the redox state of plant cells seem closely intertwined with cellular switches shifting the leaf from growth and maturation to senescence and death.  相似文献   

13.
Poly(acrylonitrile)chitosan composite membranes for urease immobilization   总被引:1,自引:0,他引:1  
(Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.  相似文献   

14.
Summary Rifamycin oxidase, an enzyme used in the biotransformation of rifamycin B to S was immobilized on nylon fibers using glutaraldehyde as the cross linking agent. An activity of 18 U/g of nylon fiber with a binding efficiency of 37% was achieved. The immobilized enzyme showed an operational stability of 7 days and was also protected against thermal inactivation. It exhibited a Km(app.) of 2.0mM.  相似文献   

15.
1. Chymotrypsin treatment of chloroplast membranes inactivates Photosystem II. The inactivation is higher when the activity is measured under low intensity actinic light, suggesting that primary photochemistry is preferentially inactivated. 2. Membrane stacking induced by Mg2+ protects Photosystem II against chymotrypsin inactivation. When the membranes are irreversible unstacked by brief treatment with trypsin, Mg2+ protection against chymotrypsin inactivation of Photosystem II is abolished. 3. The kinetics of inactivation by chymotrypsin of Photosystem II indicates that membrane stacking slows down, but does not prevent, the access of chymotrypsin to Photosystem II, which is mostly located within the partition zones. 4. It is concluded that a partition gap exists between stacked membranes of about 45 A, the size of the chymotrypsin molecule. 5. The kinetics of inhibition of the chloroplast flavoprotein, ferredoxin-NADP reductase, bt its specific antibody is not affected by membrane stacking. This indicates that this enzyme is located outside the partition zones.  相似文献   

16.
An immobilized d-hydantoinase was characterized and employed to produce n-carbamoyl-d-p-hydroxyphenylglycine (CpHPG) in a repeated batch process. The Vmax and Km of the immobilized d-hydantoinase at 50°C were 6.28 mm min−1 g−1 biocatalyst and 71.6 mm, respectively. The product CpHPG did not inhibit the activity of d-hydantoinase. Optimal reaction temperature was 60°C. A decrease in activity of immobilized d-hydantoinase due to thermal inactivation could be described as first-order decay; the deactivation energy was 23.97Kcal mol−1. Under process conditions (50°C, 10% w/v substrate, and pH 8.5), the half-life of the immobilized d-hydantoinase was eight batches. The attrition of immobilized d-hydantoinase particles with a large amount of insoluble substrate particles during stirring resulted in fine biocatalyst particles. In addition to the thermal inactivation, the loss of fine biocatalyst particles during the recovery step contributed to the low operational stability.  相似文献   

17.
Chloroplast ATPase (CF1) was embedded in fibrin membrane, which is formed by fibrinogen-fibrin conversion in the presence of thrombin and is stabilized by blood coagulation factor XIII under physiological conditions. This immobilized chloroplast ATPase has the potent ATPase activity, 0.3 μmoles Pi/mm2/min and does not cause the cold inactivation of the enzymic activity.  相似文献   

18.
A procedure is described for the immobilization of penicillin G acylase (PA) on Amberlite XAD7 modified by transamidation with 1,2-ethylenediamine and activated with glutaraldehyde. Reduction with sodium borohydride of the Schiff's bases formed between the amino groups of the protein and glutaraldehyde results in a dramatic improvement of the operational stability of the immobilized enzyme without affecting the catalytic activity. The enzyme kept in presence of the substrate, penicillin G, displays an increased stability with respect to that stored in pure phosphate buffer solution. The inactivation kinetics of the immobilized preparations of PA, determined in a continuous fixed bed reactor, as well as a discontinuous batch reactor, are reported.  相似文献   

19.
Some reactions of organic synthesis require to be performed in rather aggressive media, like organic solvents, that frequently impair enzyme operational stability to a considerable extent. We have studied the option of developing a reactivation strategy to increase biocatalyst lifespan under such conditions, under the hypothesis that organic solvent enzyme inactivation is a reversible process. Glyoxyl agarose immobilized penicillin G acylase and cross‐linked enzyme aggregates of the enzyme were considered as biocatalysts performing in dioxane medium. Reactivation strategy consisted in re‐incubation in aqueous medium of the partly inactivated biocatalysts in organic medium, best conditions of reactivation being studied with respect to dioxane concentration and level of enzyme inactivation attained prior to reactivation. Best results were obtained with glyoxyl agarose immobilized penicillin G acylase at all levels of residual activity studied, with reactivations up to 50%; for the case of a biocatalyst inactivated down to 75% of its initial activity, full recovery of enzyme activity was obtained after reactivation. The potential of this strategy was evaluated in the thermodynamically controlled synthesis of deacetoxycephalosporin G in a sequential batch reactor operation, where a 20% increase in the cumulative productivity was obtained by including an intermediate stage of reactivation after 50% inactivation. Biotechnol. Bioeng. 2009;103: 472–479. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
?-Glucosidases detected in the leaves and roots of the common beet,Beta vulgaris, have been demonstrated to catalyze hydrolysis of native betacyanins. A method is described for the isolation and purification of ?glucosidase from the roots, which involves ammonium sulfate precipitation, DEAE-cellulose chromatography, and Sephadex gel filtration. Maximum activity of the enzyme is detected at 50°C and pH 8.0; it retains stability within the pH range from 5.1 to 9.2. In leaves, ?-glucosidase is associated with chloroplast membranes; solubilization of the membranes results in enzyme inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号