首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have modeled biologically realistic neural networks that may be involved in contextual modulation of stimulus responses, as reported in the neurophysiological experiments of Motter (1994a, 1994b) (Journal of Neuroscience, 14:2179–2189 and 2190–2199). The networks of our model are structured hierarchically with feedforward, feedback, and lateral connections, totaling several thousand cells and about 300,000 synapses. The contextual modulation, arising from attention cues, is explicitly modeled as a feedback signal coming from the highest-order cortical network. The feedback signal arises from mutually inhibitory neurons with different stimulus preferences. Although our model is probably the simplest one consistent with available anatomical and physiological evidence and ignores the complexities that may exist in high-level cortical networks such as the prefrontal cortex, it reproduces the experimental results quite well and offers some guidance for future experiments. We also report the unexpected observation of 40 Hz oscillations in the model.  相似文献   

2.
A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors’ credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did—or did not—receive feedback on their veridical performance. Finally, participants re-rated the actors’ credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors’ credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance alone could not explain the observed positivity bias. Furthermore, participants’ behavior in our task was linked to the most widely used measure of attribution style. In sum, our findings suggest that positive and negative performance feedback influences the evaluation of task-related stimuli, as predicted by attribution theory. Therefore, our study points to the relevance of attribution theory for feedback processing in decision-making and provides a novel outlook for decision-making biases.  相似文献   

3.
Design and experimental validation of advanced pO2 controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO2 in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO2 control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.  相似文献   

4.
We conducted behavioral and functional magnetic resonance imaging (fMRI) research to investigate the effects of two types of achievement goals—mastery goals and performance-approach goals— on challenge seeking and feedback processing. The results of the behavioral experiment indicated that mastery goals were associated with a tendency to seek challenge, both before and after experiencing difficulty during task performance, whereas performance-approach goals were related to a tendency to avoid challenge after encountering difficulty during task performance. The fMRI experiment uncovered a significant decrease in ventral striatal activity when participants received negative feedback for any task type and both forms of achievement goals. During the processing of negative feedback for the rule-finding task, performance-approach-oriented participants showed a substantial reduction in activity in the dorsolateral prefrontal cortex (DLPFC) and the frontopolar cortex, whereas mastery-oriented participants showed little change. These results suggest that performance-approach-oriented participants are less likely to either recruit control processes in response to negative feedback or focus on task-relevant information provided alongside the negative feedback. In contrast, mastery-oriented participants are more likely to modulate aversive valuations to negative feedback and focus on the constructive elements of feedback in order to attain their task goals. We conclude that performance-approach goals lead to a reluctant stance towards difficulty, while mastery goals encourage a proactive stance.  相似文献   

5.
Auditory feedback is required to maintain fluent speech. At present, it is unclear how attention modulates auditory feedback processing during ongoing speech. In this event-related potential (ERP) study, participants vocalized/a/, while they heard their vocal pitch suddenly shifted downward a ½ semitone in both single and dual-task conditions. During the single-task condition participants passively viewed a visual stream for cues to start and stop vocalizing. In the dual-task condition, participants vocalized while they identified target stimuli in a visual stream of letters. The presentation rate of the visual stimuli was manipulated in the dual-task condition in order to produce a low, intermediate, and high attentional load. Visual target identification accuracy was lowest in the high attentional load condition, indicating that attentional load was successfully manipulated. Results further showed that participants who were exposed to the single-task condition, prior to the dual-task condition, produced larger vocal compensations during the single-task condition. Thus, when participants’ attention was divided, less attention was available for the monitoring of their auditory feedback, resulting in smaller compensatory vocal responses. However, P1-N1-P2 ERP responses were not affected by divided attention, suggesting that the effect of attentional load was not on the auditory processing of pitch altered feedback, but instead it interfered with the integration of auditory and motor information, or motor control itself.  相似文献   

6.
7.
It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors (“chalones”) may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives—what, precisely, is being controlled, and to what degree—and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE—the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue—fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules—such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator—may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.  相似文献   

8.
The ability to suddenly stop a planned movement or a movement being performed and restart it after a short interval is an important mechanism that allows appropriate behavior in response to contextual or environmental changes. However, performing such stop-and-restart movements smoothly is difficult at times. We investigated performance (response time) of stop-and-restart movements using a go/stop/re-go task and found consistent stop-and-restart difficulties after short (∼100 ms) stop-to-restart intervals (SRSI), and an increased probability of difficulties after longer (>200 ms) SRSIs, suggesting that two different mechanisms underlie stop-and-restart difficulties. Next, we investigated motor evoked potentials (MEPs) in a moving muscle induced by transcranial magnetic stimulation during a go/stop/re-go task. In re-go trials with a short SRSI (100 ms), the MEP amplitude continued to decrease after the re-go-signal onset, indicating that stop-and-restart difficulties with short SRSIs might be associated with a neural mechanism in the human motor system, namely, stop-related suppression of corticomotor (CM) excitability. Finally, we recorded electroencephalogram (EEG) activity during a go/stop/re-go task and performed a single-trial-based EEG power and phase time-frequency analysis. Alpha-band EEG phase locking to re-go-signal, which was only observed in re-go trials with long SRSI (250 ms), weakened in the delayed re-go response trials. These EEG phase dynamics indicate an association between stop-and-restart difficulties with long SRSIs and a neural mechanism in the human perception system, namely, decreased probability of EEG phase locking to visual stimuli. In contrast, smooth stop-and-restart human movement can be achieved in re-go trials with sufficient SRSI (150–200 ms), because release of stop-related suppression and simultaneous counter-activation of CM excitability may occur as a single task without second re-go-signal perception. These results suggest that skilled motor behavior is subject to various constraints in not only motor, but also perceptual (and attentional), systems.  相似文献   

9.
The main purpose of this study is to compare two different feedback controllers for the stabilization of quiet standing in humans, taking into account that the intrinsic ankle stiffness is insufficient and that there is a large delay inducing instability in the feedback loop: 1) a standard linear, continuous-time PD controller and 2) an intermittent PD controller characterized by a switching function defined in the phase plane, with or without a dead zone around the nominal equilibrium state. The stability analysis of the first controller is carried out by using the standard tools of linear control systems, whereas the analysis of the intermittent controllers is based on the use of Poincaré maps defined in the phase plane. When the PD-control is off, the dynamics of the system is characterized by a saddle-like equilibrium, with a stable and an unstable manifold. The switching function of the intermittent controller is implemented in such a way that PD-control is ‘off’ when the state vector is near the stable manifold of the saddle and is ‘on’ otherwise. A theoretical analysis and a related simulation study show that the intermittent control model is much more robust than the standard model because the size of the region in the parameter space of the feedback control gains (P vs. D) that characterizes stable behavior is much larger in the latter case than in the former one. Moreover, the intermittent controller can use feedback parameters that are much smaller than the standard model. Typical sway patterns generated by the intermittent controller are the result of an alternation between slow motion along the stable manifold of the saddle, when the PD-control is off, and spiral motion away from the upright equilibrium determined by the activation of the PD-control with low feedback gains. Remarkably, overall dynamic stability can be achieved by combining in a smart way two unstable regimes: a saddle and an unstable spiral. The intermittent controller exploits the stabilizing effect of one part of the saddle, letting the system evolve by alone when it slides on or near the stable manifold; when the state vector enters the strongly unstable part of the saddle it switches on a mild feedback which is not supposed to impose a strict stable regime but rather to mitigate the impending fall. The presence of a dead zone in the intermittent controller does not alter the stability properties but improves the similarity with biological sway patterns. The two types of controllers are also compared in the frequency domain by considering the power spectral density (PSD) of the sway sequences generated by the models with additive noise. Different from the standard continuous model, whose PSD function is similar to an over-damped second order system without a resonance, the intermittent control model is capable to exhibit the two power law scaling regimes that are typical of physiological sway movements in humans.  相似文献   

10.
Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants'' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent “negative” feedback (participants'' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.  相似文献   

11.
Locomotion and feeding in marine animals are intimately linked to the flow dynamics created by specialized body parts. This interaction is of particular importance during ontogeny, when changes in behaviour and scale challenge the organism with shifts in fluid regimes and altered functionality. Previous studies have indicated that Scyphozoan jellyfish ontogeny accommodates the changes in fluid dynamics associated with increasing body dimensions and velocities during development. However, in addition to scale and behaviour that—to a certain degree—underlie the control of the animal, flow dynamics are also dependent on external factors such as temperature. Here, we show phenotypic plasticity in juvenile Aurelia aurita medusae, where morphogenesis is adapted to altered fluid regimes imposed by changes in ambient temperature. In particular, differential proportional growth was found to compensate for temperature-dependent changes in viscous effects, enabling the animal to use adhering water boundary layers as ‘paddles’—and thus economize tissue—at low temperatures, while switching to tissue-dominated propulsion at higher temperatures where the boundary layer thickness is insufficient to serve for paddling. This effect was predicted by a model of animal–fluid interaction and confirmed empirically by flow-field visualization and assays of propulsion efficiency.  相似文献   

12.
The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants'' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants'' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.  相似文献   

13.
A large number of recent studies suggest that the sensorimotor system uses probabilistic models to predict its environment and makes inferences about unobserved variables in line with Bayesian statistics. One of the important features of Bayesian statistics is Occam''s Razor—an inbuilt preference for simpler models when comparing competing models that explain some observed data equally well. Here, we test directly for Occam''s Razor in sensorimotor control. We designed a sensorimotor task in which participants had to draw lines through clouds of noisy samples of an unobserved curve generated by one of two possible probabilistic models—a simple model with a large length scale, leading to smooth curves, and a complex model with a short length scale, leading to more wiggly curves. In training trials, participants were informed about the model that generated the stimulus so that they could learn the statistics of each model. In probe trials, participants were then exposed to ambiguous stimuli. In probe trials where the ambiguous stimulus could be fitted equally well by both models, we found that participants showed a clear preference for the simpler model. Moreover, we found that participants’ choice behaviour was quantitatively consistent with Bayesian Occam''s Razor. We also show that participants’ drawn trajectories were similar to samples from the Bayesian predictive distribution over trajectories and significantly different from two non-probabilistic heuristics. In two control experiments, we show that the preference of the simpler model cannot be simply explained by a difference in physical effort or by a preference for curve smoothness. Our results suggest that Occam''s Razor is a general behavioural principle already present during sensorimotor processing.  相似文献   

14.
A number of studies have shown that individuals often spontaneously mimic the facial expressions of others, a tendency known as facial mimicry. This tendency has generally been considered a reflex-like “automatic” response, but several recent studies have shown that the degree of mimicry may be moderated by contextual information. However, the cognitive and motivational factors underlying the contextual moderation of facial mimicry require further empirical investigation. In this study, we present evidence that the degree to which participants spontaneously mimic a target’s facial expressions depends on whether participants are motivated to infer the target’s emotional state. In the first study we show that facial mimicry, assessed by facial electromyography, occurs more frequently when participants are specifically instructed to infer a target’s emotional state than when given no instruction. In the second study, we replicate this effect using the Facial Action Coding System to show that participants are more likely to mimic facial expressions of emotion when they are asked to infer the target’s emotional state, rather than make inferences about a physical trait unrelated to emotion. These results provide convergent evidence that the explicit goal of understanding a target’s emotional state affects the degree of facial mimicry shown by the perceiver, suggesting moderation of reflex-like motor activities by higher cognitive processes.  相似文献   

15.
Vision plays a crucial role in human interaction by facilitating the coordination of one''s own actions with those of others in space and time. While previous findings have demonstrated that vision determines the default use of reference frames, little is known about the role of visual experience in coding action-space during joint action. Here, we tested if and how visual experience influences the use of reference frames in joint action control. Dyads of congenitally-blind, blindfolded-sighted, and seeing individuals took part in an auditory version of the social Simon task, which required each participant to respond to one of two sounds presented to the left or right of both participants. To disentangle the contribution of external—agent-based and response-based—reference frames during joint action, participants performed the task with their respective response (right) hands uncrossed or crossed over one another. Although the location of the auditory stimulus was completely task-irrelevant, participants responded overall faster when the stimulus location spatially corresponded to the required response side than when they were spatially non-corresponding: a phenomenon known as the social Simon effect (SSE). In sighted participants, the SSE occurred irrespective of whether hands were crossed or uncrossed, suggesting the use of external, response-based reference frames. Congenitally-blind participants also showed an SSE, but only with uncrossed hands. We argue that congenitally-blind people use both agent-based and response-based reference frames resulting in conflicting spatial information when hands are crossed and, thus, canceling out the SSE. These results imply that joint action control functions on the basis of external reference frames independent of the presence or (transient/permanent) absence of vision. However, the type of external reference frames used for organizing motor control in joint action seems to be determined by visual experience.  相似文献   

16.
In human societies, social behaviour is strongly influenced by threats of punishment, even though the threats themselves rarely need to be exercised. Recent experimental evidence suggests that similar hidden threats can promote cooperation and limit within-group selfishness in some animal systems. In other animals, however, threats appear to be ineffective. Here I review theoretical and empirical studies that help to understand the evolutionary causes of these contrasting patterns, and identify three factors—impact, accuracy and perception—that together determine the effectiveness of threats to induce cooperation.  相似文献   

17.
Bacterial type IV pili are essential for adhesion to surfaces, motility, microcolony formation, and horizontal gene transfer in many bacterial species. These polymers are strong molecular motors that can retract at two different speeds. In the human pathogen Neisseria gonorrhoeae speed switching of single pili from 2 µm/s to 1 µm/s can be triggered by oxygen depletion. Here, we address the question how proton motive force (PMF) influences motor speed. Using pHluorin expression in combination with dyes that are sensitive to transmembrane ΔpH gradient or transmembrane potential ΔΨ, we measured both components of the PMF at varying external pH. Depletion of PMF using uncouplers reversibly triggered switching into the low speed mode. Reduction of the PMF by ≈ 35 mV was enough to trigger speed switching. Reducing ATP levels by inhibition of the ATP synthase did not induce speed switching. Furthermore, we showed that the strictly aerobic Myxococcus xanthus failed to move upon depletion of PMF or oxygen, indicating that although the mechanical properties of the motor are conserved, its regulatory inputs have evolved differently. We conclude that depletion of PMF triggers speed switching of gonococcal pili. Although ATP is required for gonococcal pilus retraction, our data indicate that PMF is an independent additional energy source driving the high speed mode.  相似文献   

18.

Background

Using tools to act on non-food objects—for example, to make other tools—is considered to be a hallmark of human intelligence, and may have been a crucial step in our evolution. One form of this behaviour, ‘sequential tool use’, has been observed in a number of non-human primates and even in one bird, the New Caledonian crow (Corvus moneduloides). While sequential tool use has often been interpreted as evidence for advanced cognitive abilities, such as planning and analogical reasoning, the behaviour itself can be underpinned by a range of different cognitive mechanisms, which have never been explicitly examined. Here, we present experiments that not only demonstrate new tool-using capabilities in New Caledonian crows, but allow examination of the extent to which crows understand the physical interactions involved.

Methodology/Principal Findings

In two experiments, we tested seven captive New Caledonian crows in six tasks requiring the use of up to three different tools in a sequence to retrieve food. Our study incorporated several novel features: (i) we tested crows on a three-tool problem (subjects were required to use a tool to retrieve a second tool, then use the second tool to retrieve a third one, and finally use the third one to reach for food); (ii) we presented tasks of different complexity in random rather than progressive order; (iii) we included a number of control conditions to test whether tool retrieval was goal-directed; and (iv) we manipulated the subjects'' pre-testing experience. Five subjects successfully used tools in a sequence (four from their first trial), and four subjects repeatedly solved the three-tool condition. Sequential tool use did not require, but was enhanced by, pre-training on each element in the sequence (‘chaining’), an explanation that could not be ruled out in earlier studies. By analyzing tool choice, tool swapping and improvement over time, we show that successful subjects did not use a random probing strategy. However, we find no firm evidence to support previous claims that sequential tool use demonstrates analogical reasoning or human-like planning.

Conclusions/Significance

While the ability of subjects to use three tools in sequence reveals a competence beyond that observed in any other species, our study also emphasises the importance of parsimony in comparative cognitive science: seemingly intelligent behaviour can be achieved without the involvement of high-level mental faculties, and detailed analyses are necessary before accepting claims for complex cognitive abilities.  相似文献   

19.
Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores—the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.  相似文献   

20.
By reverse-engineering we have detected eight kinetic phases of the symmetric switch cycle of the Halobacterium salinarum flagellar motor assembly and identified those steps in the switch cycle that are controlled by sensory rhodopsins during phototaxis. Upon switching the rotational sense, the flagellar motor assembly passes through a stop state from which all subunits synchronously resume rotation in the reverse direction. The assembly then synchronously proceeds through three subsequent functional states of the switch: Refractory, Competent, and Active, from which the rotational sense is switched again. Sensory control of the symmetric switch cycle occurs at two steps in each rotational sense by inversely regulating the probabilities for a change from the Refractory to the Competent and from Competent to the Active rotational mode. We provide a mathematical model for flagellar motor switching and its sensory control, which is able to explain all tested experimental results on spontaneous and light-controlled motor switching, and give a mechanistic explanation based on synchronous conformational transitions of the subunits of the switch complex after reversible dissociation and binding of a response regulator (CheYP). We conclude that the kinetic mechanism of flagellar motor switching and its sensory control is fundamentally different in the archaeon H. salinarum and the bacterium Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号