首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemoglobin (Hb) was immobilized on the chitosan films using glutaraldehyde as a bifunctional agent. Atomic force microscopy (AFM) was used to examine the film surface in order to image the presence of Hb and Fourier transform infrared spectroscopy (FT-IR) was detected to elucidate the structural change of the immobilized Hb. The influences of several immobilization parameters were investigated, the optimum concentration of glutaraldehyde, pH and binding time were determined as 0.7%, 4.5 and 6 h, respectively. The enzymatic assay indicates that the immobilized Hb showed a higher thermal stability than that of free Hb, and the catalytic activity in organic solvents was also enhanced.  相似文献   

2.
尝试使用α-淀粉酶进行糖苷转移提取玉米中总黄酮,同时对α-淀粉酶的固定化进行研究。对α-淀粉酶固定化的研究表明:以壳聚糖为载体,用体积分数4%戊二醛进行交联,加酶量为3 g.L-1条件下可以获得最佳的固定化效果;与游离酶相比,其最适作用温度范围、pH值范围均比游离酶范围宽;固定化酶的热稳定性优于游离酶,且具有良好的操作稳定性。本试验使用游离酶法、固定化酶法提取玉米中总黄酮,得率分别为2.82%、2.46%。  相似文献   

3.
In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the ?NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of “X-spacer-X” were used, differing by the reactive functional groups (X = aldehyde: ?CHO, isothiocyanate: ?NCS, isocyanate: ?NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30 °C against no loss for PDC and DIC).These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.  相似文献   

4.
The stabilization achieved by different immobilization protocols have been compared using three different enzymes (glutaryl acylase (GAC), D-aminoacid oxidase (DAAO), and glucose oxidase (GOX)): adsorption on aminated supports, treatment of this adsorbed enzymes with glutaraldehyde, and immobilization on glutaraldehyde pre-activated supports. In all cases, the treatment of adsorbed enzymes on amino-supports with glutaraldehyde yielded the higher stabilizations: in the case of GOX, a stabilization over 400-fold was achieved. After this treatment, the enzymes could no longer be desorbed from the supports using high ionic strength (suggesting the support-protein reaction). Modification of the enzymes immobilized on supports that did not offer the possibility of react with glutaraldehyde showed the same stability that the non modified preparations demonstrating that the mere chemical modification did not have effect on the enzyme stability. This simple strategy seems to permit very good results in terms of immobilization rate and stability, offering some advantages when compared to the immobilization on glutaraldehyde pre-activated supports.  相似文献   

5.
Macroporous cellulose and glass membranes were prepared from filter paper and glass fiber filter, respectively. To enhance their stability, the cellulose membranes were crosslinked with epichlorohydrin, and the glass membranes were crosslinked with glutaraldehyde or organic bifunctional silanes. Several pathways for the modification, activation, and ligand immobilization were used and compared. For cellulose membranes, the diazotization method provided the best results, whereas the glutaraldehyde method provided the best performance for glass membranes, regarding both their stability and ligand immobilization capacity. The characterization of the membranes was made by using a triazine dye, bovine serum albumin, and trypsin as test ligands. The membrane morphologies and the uniformities of ligand distribution across the membrane cartridges were investigated. Numerous affinity ligands were immobilized onto the membranes, and the prepared affinity membranes have been used to separate or purify concanavalin A, peroxidase, protease inhibitors, globulin, fibronectin, and other biomolecules.  相似文献   

6.
Organophosphate hydrolase has potential as a bioremediation and chemical detoxification enzyme, but the problems of reusability and stability need to be addressed to use this enzyme on an industrial scale. Immobilizing the enzyme to a nanoscaffold may help to solve these problems. Amyloid fibrils generated from insulin and crystallin provided a novel nanoscaffold for the immobilization of organophosphate hydrolase, using glutaraldehyde as the crosslinking reagent. Electrophoretic, centrifugation, and temperature stability experiments, together with transmission electron microscopy were undertaken to verify that crosslinking had successfully occurred. The resulting fibrils remained active towards the substrate paraoxon and when immobilized to the insulin amyloid fibrils, the enzyme exhibited a significant (~ 300%) increase in the relative temperature stability at 40, 45, and 50°C (as measured by comparing the initial enzyme activity to the activity remaining after heating), compared to free enzyme. This confirms that amyloid fibrils could provide a new type of nanoscaffold for enzyme immobilization.  相似文献   

7.
Immobilization and kinetics of catalase onto magnesium silicate   总被引:2,自引:0,他引:2  
Bovine liver catalase was immobilized covalently with glutaraldehyde, or glutaraldehyde+3-aminopropionic acid as a spacer, onto magnesium silicate. The coupling time was determined as 2 h for immobilization. The pH and temperature optima as well as the changes in the kinetics (Km, Vmax, Ea) of the immobilized catalase was observed and discussed. Immobilized catalase preparations showed higher storage stabilities than free catalase. The half-life of free catalase, catalase immobilized via glutaraldehyde and catalase immobilized via glutaraldehyde+spacer were calculated as 2, 55 and 10 days at room temperature and 4, 85 and 107 days at 5 °C, respectively. The operational stability of the catalase immobilized via glutaraldehyde was higher than the catalase immobilized via glutaraldehyde+spacer. The remaining activity of the catalase immobilized via glutaraldehyde was about 90% and that of the catalase immobilized via glutaraldeyde+spacer was about 30% after 20 cycles of batch operation.  相似文献   

8.
The immobilization of papain on the mesoporous molecular sieve MCM‐48 (with a pore size of 6.2 nm in diameter) with the aid of glutaraldehyde, and the characteristics of this immobilized papain are described. The optimum conditions for immobilization were as follows: 20 mg native free enzyme/g of the MCM‐48 and 0.75 % glutaraldehyde, 2 h at 10–20 °C and pH 7.0. Under these optimum conditions for immobilization, the activity yield [%] of the immobilized enzyme was around 70 %. The influence of the pH on the activity of the immobilized enzyme was much lower compared to the free enzyme. The thermostability of the immobilized enzyme, whose half‐life was more than 2500 min, was greatly improved and was found to be significantly higher than that of the free enzyme (about 80 min). The immobilized enzyme also showed good operational stability, and the activity of the immobilized enzyme continued to maintain 76.5 % of the initial activity even after a 12‐day continuous operation. Moreover, the immobilized enzyme still exhibited good storage stability. From these results, papain immobilized on the MCM‐48 with the aid of glutaraldehyde, can be used as a high‐performance biocatalyst in biotechnological processing, in particular in industrial and medical applications.  相似文献   

9.
Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose   总被引:1,自引:0,他引:1  
This paper presents stable Alcalase-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced by immobilizing-stabilizing Alcalase on cross-linked 10% agarose beads, using low and high activation grades of the support and different immobilization times. The Alcalase glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde and CNBr as activation reactants. The performance of derivatives in the hydrolysis of casein was also tested. At pH 8.0 and 50 degrees C, Alcalase derivatives produced with 1 h of immobilization time on agarose activated with glutaraldehyde, CNBr, and low and high glyoxyl groups concentration presented half-lives of ca. 10, 29, 60, and 164 h, respectively. More extensive immobilization monotonically led to higher stabilization. The most stabilized Alcalase-glyoxyl derivative was produced using 96 h of immobilization time and high activation grade of the support. It presented half-life of ca. 23 h, at pH 8.0 and 63 degrees C and was ca. 500-fold more stable than the soluble enzyme. Thermal inactivation of all derivatives followed a single-step non-first-order kinetics. The most stable derivative presented ca. 54% of the activity of the soluble enzyme for the hydrolysis of casein and of the small substrate Boc-Ala-ONp. This behavior suggests that the decrease in activity was due to enzyme distortion but not to wrong orientation. The hydrolysis degree of casein at 80 degrees C with the most stabilized enzyme was 2-fold higher than that achieved using soluble enzyme, as a result of the thermal inactivation of the latter. Therefore, the high stability of the new Alcalase-glyoxyl derivative allows the design of continuous processes to hydrolyze proteins at temperatures that avoid microbial growth.  相似文献   

10.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

11.
β-Glucosidases from two different commercial preparations, Pectinex Ultra SP-L and Celluclast® 1.5L, were immobilized on divinylsulfone (DVS) supports at pH 5.0, 7.0, 9.0, and 10. In addition, the biocatalysts were also immobilized in agarose beads activated by glyoxyl, and epoxide as reagent groups. The best immobilization results were observed using higher pH values on DVS-agarose, and for Celluclast® 1.5L, good results were also obtained using the glyoxil-agarose immobilization. The biocatalyst obtained using Pectinex Ultra SP-L showed the highest thermal stability, at 65°C, and an operational stability of 67% of activity after 10 reuses cycles when immobilized on DVS-agarose immobilized at pH 10 and blocked with ethylenediamine. The β-glucosidase from Celluclast® 1.5L produced best results when immobilized on DVS-agarose immobilized at pH 9 and blocked with glycine, reaching 7.76-fold higher thermal stability compared to its free form and maintaining 76% of its activity after 10 successive cycles. The new biocatalysts obtained by these protocols showed reduction of glucose inhibition of enzymes, demonstrating the influence of immobilization protocols, pH, and blocking agent.  相似文献   

12.
We have prepared a new bifunctional reagent for the cross-linking and reversible immobilization of proteins through their amine groups. This compound, ethylene glycolyl bis(succinimidyl succinate), reacts rapidly with proteins, at pH 7 and at high dilution. The resulting protein cross-links are readily cleaved at pH 8.5 using hydroxylamine for 3–6 hr. at 37°C. Substantial enzymatic activity was observed with lactic dehydrogenase after such reversible cross-linking. Trypsin immobilized on agarose using this reagent retains full specific activity, is stable for weeks in the cold, and may be released with hydroxylamine at 25°C. This compound appears suitable for studies involving proteins with essential disulfide linkages.  相似文献   

13.
Whole cells of Escherichia coli having high aspartase (L-asparate ammonialyase, EC 4.3.1.1) activity were immobilized by entrapping into a kappa-carrageenan gel. The obtained immobilized cells were treated with glutaraldehyde or with glutaraldehyde and hexamethylenediamine. The enzymic properties of three immobilized cell preparations were investigated, and compared with those of the soluble aspartate. The optimum pH of the aspartase reaction was 9.0 for the three immobilized cell preparations and 9.5 for the soluble enzyme. The optimum temperature for three immobilized cell preparations was 5--10 degrees C higher than that for the soluble enzyme. The apparent Km values of immobilized cell preparations were about five times higher than that of the soluble enzyme. The heat stability of intact cells was increased by immobilization. The operational stability of the immobilized cell columns was higher at pH 8.5 than at optimum pH of the aspartase reaction. From the column effluents, L-aspartic acid was obtained in a good yield.  相似文献   

14.
A thiol protease purified from mungbean seedlings was immobilized on chitosan beads cross-linked with glutaraldehyde. The yield of the immobilized enzyme was maximum (~99%) at 1% concentration each of chitosan and glutaraldehyde. The immobilized enzyme showed reusability for 15 batch reactions. Immobilization shifted the optimum pH of the enzyme to a more acidic range and enhanced its stability both at acidic as well as alkaline pH values compared to the free enzyme. The stability of the enzyme to temperature and in aqueous non-conventional medium (ethanol and DMSO) was significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation reflected by a higher apparent Km value. This study produced an immobilized biocatalyst having improved characteristics and better operational stability than the soluble enzyme. The increase in stability in the presence of high concentrations of ethanol and DMSO may make it useful for catalyzing organic reactions such as trans-esterification and trans-amidation similar to other cysteine proteinases.  相似文献   

15.
Crosslinking of enzyme aggregates is a promising method for enzyme immobilization. In this work, crosslinked enzyme coaggregates of Serratia marcescens lipase with polyethyleneimine (CLECAs-SML-PEI) were prepared using polyethyleneimine (PEI) as coprecipitant and glutaraldehyde as crosslinking reagent. The crude lipase solution at a low protein concentration (0.1 mg/ml), with PEI at a mass ratio of 3:1 (PEI/protein, w/w), was found to be most adequate for the coprecipitation of SML. After crosslinking of the coaggregate of SML-PEI with 0.2% (w/v) glutaraldehyde under ambient temperature, over 70% of the total lipase activity was recovered. Compared with the free SML, the optimum temperature of the CLECAs-SML-PEI was enhanced from 50 °C to 60 °C and its thermal stability was also significantly improved. CLECAs-SML-PEI showed excellent operational stability in repeated use in aqueous–toluene biphasic system for asymmetric hydrolysis of trans-3-(4′-methoxyphenyl)glycidic acid methyl ester (MPGM), without significant inactivation after 10 rounds of repeated use.  相似文献   

16.
A novel reactive perstraction system has been developed based on liquid-core capsules, involving an enzyme-catalyzed reaction coupled with simultaneous in situ product recovery. Lipase-catalyzed reactions, hydrolysis of triprionin and nitrophenyl laurate, were selected to test the system and demonstrate the feasibility of immobilization of enzymes to the membranes of liquid-core capsules and the ability to extract hydrophobic products of the reaction within the capsule core. The lipase from Candida rugosa was immobilized to the microcapsules by adsorption and by covalent binding through activation with glutaraldehyde. In both cases improved temperature and operational stability were achieved. Both types of immobilization resulted in a basic shift of the pH optimum for activity, from 7.5 to 9.0. The presence of an organic phase within the capsule core allowed direct product separation and lead to a decrease in product inhibition of the lipase-catalyzed reaction.  相似文献   

17.
Chitosan from a native Mucoralean strain, Syncephalastrum racemosum, isolated from herbivorous dung (Northeast-Brazil), was used as a film support for lipase immobilization. S. racemosum showed highest chitosan yield (152 mg g dry mycelia weight(-1); 15.2% of dry mycelia weight) among the nine strains screened, which presented 89% D-glucosamine. A chitosan film was used for lipase (EC 3.1.1.3) immobilization using glutaraldehyde as a bifunctional agent. The immobilized lipase retained 47% (12.6 micromol s(-1) m(-2)) of its initial catalytic activity after four cycles of reaction. This result is comparable (same order of magnitude) to that of the enzyme immobilized on film made from commercially available crustacean chitosan.  相似文献   

18.
《Process Biochemistry》2010,45(7):1192-1195
Whole cell-mediated methanolysis of renewable oils for biodiesel production has drawn much attention in recent years since it can avoid the complex procedures of isolation, purification and immobilization required for the preparation of immobilized lipase. It has been demonstrated that Rhizopus oryzae IFO 4697 whole cell could catalyze the methanolysis of renewable oils for biodiesel production effectively and glutaraldehyde (GA) cross-linking treatment on whole cell catalyst could improve its stability in the repeated uses. The catalytic performance of cells with GA cross-linking treatment was studied systematically in this paper. The results showed that the treated cells expressed higher methanol tolerance, and high catalytic activity could be maintained with higher ratio of methanol to oil; the operational stability of whole cell catalyst and methanol utilization rate were also considered in optimization of methanol addition strategy. A novel methanol addition strategy was proposed, with which the reaction time could be shortened significantly and a biodiesel yield of 94.1% could be obtained within 24 h reaction; it was also found that with this methanol addition strategy, GA cross-linked whole cell expressed rather good operational stability; the reason for stability improvement was also investigated and should be attributed to less lipase leakage.  相似文献   

19.
5-Dimethylaminonaphthalene-1-sulfonyl fluoride was evaluated as a reagent for the selective labeling of proteins. In a comparative study with Dns-chloride a greatly increased selectivity of the fluoride was found with a number of proteins. The reaction of Dns-fluoride with alpha-chymotrypsin, subtilisin Carlsberg and trypsin was found to be highly specific, resulting in a stoichiometric incorporation of the Dns label with concomitant loss of enzymatic activity. The reaction of Dns-chloride with the same proteinases is unspecific. Evidence was obtained to indicate that reaction of the serine esterases with Dns-fluoride occurs exclusively at the active serine residue. The stability of Dns-fluoride labeled chymotrypsin was investigated. The conjugate was found to be fairly stable in the pH range from 3 to 9 at 25 degrees C and is therefore suitable for fluorescence investigations of the chymotrypsin active-site. Molar extinction coefficients for Dns-labeled serine proteinases were determined using radiocative label.  相似文献   

20.
Glutaraldehyde possesses unique characteristics that render it one of the most effective protein crosslinking reagents. It can be present in at least 13 different forms depending on solution conditions such as pH, concentration, temperature, etc. Substantial literature is found concerning the use of glutaraldehyde for protein immobilization, yet there is no agreement about the main reactive species that participates in the crosslinking process because monomeric and polymeric forms are in equilibrium. Glutaraldehyde may react with proteins by several means such as aldol condensation or Michael-type addition, and we show here 8 different reactions for various aqueous forms of this reagent. As a result of these discrepancies and the unique characteristics of each enzyme, crosslinking procedures using glutaraldehyde are largely developed through empirical observation. The choice of the enzyme-glutaraldehyde ratio, as well as their final concentration, is critical because insolubilization of the enzyme must result in minimal distortion of its structure in order to retain catalytic activity. The purpose of this paper is to give an overview of glutaraldehyde as a crosslinking reagent by describing its structure and chemical properties in aqueous solution in an attempt to explain its high reactivity toward proteins, particularly as applied to the production of insoluble enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号