首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Predicting the likelihood of wildlife presence at potential wildlife–livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High‐resolution data can help identify fine‐scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human–wildlife conflict.
  2. This study uses fine‐scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi‐likelihood were used to identify habitat‐based and anthropogenic predictors of wild boar signs.
  3. Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest‐type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest‐type habitats and near recreational parks and less likely to be seen near livestock.
  4. This approach shows that wild boar habitat use can be predicted using fine‐scale data over comparatively small areas and in human‐dominated landscapes, while taking account of the spatial correlation from other nearby fine‐scale data‐points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement‐restricted, isolated, or fragmented wildlife populations.
  相似文献   

2.
  1. Prairie dogs (Cynomys sp.) are considered keystone species and ecosystem engineers for their grazing and burrowing activities (summarized here as disturbances). As climate changes and its variability increases, the mechanisms underlying organisms'' interactions with their habitat will likely shift. Understanding the mediating role of prairie dog disturbance on vegetation structure, and its interaction with environmental conditions through time, will increase knowledge on the risks and vulnerability of grasslands.
  2. Here, we compared how plant taxonomical diversity, functional diversity metrics, and community‐weighted trait means (CWM) respond to prairie dog C. mexicanus disturbance across grassland types and seasons (dry and wet) in a priority conservation semiarid grassland of Northeast Mexico.
  3. Our findings suggest that functional metrics and CWM analyses responded to interactions between prairie dog disturbance, grassland type and season, whilst species diversity and cover measures were less sensitive to the role of prairie dog disturbance. We found weak evidence that prairie dog disturbance has a negative effect on vegetation structure, except for minimal effects on C4 and graminoid cover, but which depended mainly on season. Grassland type and season explained most of the effects on plant functional and taxonomic diversity as well as CWM traits. Furthermore, we found that leaf area as well as forb and annual cover increased during the wet season, independent of prairie dog disturbance.
  4. Our results provide evidence that grassland type and season have a stronger effect than prairie dog disturbance on the vegetation of this short‐grass, water‐restricted grassland ecosystem. We argue that focusing solely on disturbance and grazing effects is misleading, and attention is needed on the relationships between vegetation and environmental conditions which will be critical to understand semiarid grassland dynamics under future climate change conditions in the region.
  相似文献   

3.
  1. Interacting species are experiencing disruptions in the relative timing of their key life‐history events due to climate change. These shifts can sometimes be detrimental to the fitness of the consumer in trophic interactions but not always.
  2. The potential consequences of phenological asynchrony for the monarch butterfly (Danaus plexippus) and its host plant (Asclepias spp.) have not been well‐studied. Given that plants generally undergo seasonal declines in quality, if climate change delays the timing of the larval stage relative to the availability of younger milkweed plants, monarch performance could be negatively affected.
  3. Here, we explore the potential consequences for the eastern monarch population due to probable asynchrony with milkweed. We used field surveys around Ottawa, Canada, to determine monarch oviposition preference on common milkweed (Asclepias syriaca) plants and the seasonal availability of these plants. To determine the potential fitness consequences when females oviposit on nonpreferred plants, we conducted a field experiment to assess the effect of milkweed size on monarch larval performance (e.g., development time and final size).
  4. Preferred oviposition plants (earlier stages of development and better condition) were consistently available in large proportion over the summer season. We also found that declines in leaf quality (more latex and thicker leaves) with plant size did not translate into decreases in larval performance.
  5. Our results suggest that even if asynchrony of the monarch–milkweed interaction occurs due to climate change, the larval stage of the eastern monarch may not face negative consequences. Future studies should determine how the relative timing of the interaction will change in the region.
  相似文献   

4.
  1. Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviors that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource acquisition and the overall pace of life of individuals it is not clear how metabolic rate interacts with the larger suite of traits to ultimately determine individual fitness.
  2. We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden.
  3. Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations, was lower in pelagic perch.
  4. This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype‐specific vulnerabilities to climate change and differences in top‐down predation pressure across habitats.
  相似文献   

5.
  1. The influence of environmental factors on the distribution and persistence of African elephants (Loxodonta africana) is pertinent to policy makers and managers to formulate balanced plans for different land‐use types.
  2. The study focuses on movement of elephants and how they utilize foraging areas in Sioma Ngwezi landscape in Zambia by answering the following questions: (1) Which environmental variables and land‐cover class predict the movement of elephants during the wet season in Sioma Ngwezi landscape? (2) What is the wet season suitable habitat for elephants in Sioma Ngwezi landscape? (3) What are the major wet season movement corridors for elephants in Sioma Ngwezi landscape?
  3. We used GPS telemetry data from the collared elephants to assess habitat connectivity. Maximum entropy (MaxEnt) and linkage mapper were the tools used to predict habitat suitability, movement corridors, and barriers in the landscape during the wet season.
  4. The study identified elevation, land cover, and NDVI as the most important environmental predictors that modify the dispersal of elephants in the landscape during the wet season. Additionally, a total of 36 potential wet season corridors were identified connecting 15 core areas mainly used for foraging and protection from poachers in the landscape. Of these, 24 corridors were highly utilized and are suggested as priority corridors for elephant movement in the landscape.
  5. The identified wet season habitats and functional corridors may help to combat elephant poaching by patrolling areas with high relative probability of elephant presence. The findings may also help abate human–elephant conflict such as crop‐raiding by managing identified corridors that run into agriculture zones in the game management area.
  相似文献   

6.
  1. Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.
  2. We apply a framework for using K‐means clustering to classify bird behavior using points from short time interval GPS tracks. K‐means clustering is a well‐known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply K‐means clustering to six focal variables derived from GPS data collected at 1–11 s intervals from free‐flying bald eagles (Haliaeetus leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life‐stage‐ and age‐related variation in behavior.
  3. After filtering for data quality, the K‐means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non‐moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.
  4. The K‐means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short‐interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high‐dimensional movement data, it provides insight into small‐scale variation in behavior that would not be possible with many other analytical approaches.
  相似文献   

7.
  1. When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid wasp Cotesia congregata suffers high mortality when reared throughout development at temperatures that are nonstressful for its host, Manduca sexta. However, the effects of short‐term heat stress during parasitoid development are unknown in this host–parasitoid system.
  2. Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance of C. congregata and its host¸ M. sexta. We find that the developmental timing of short‐term heat waves strongly determines parasitoid and host outcomes.
  3. Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long‐lived hosts. Heat waves during the 1st‐instar had little effect on wasp success, whereas heat waves during the parasitoid''s nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.
  4. Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host–parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.
  相似文献   

8.
  1. The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.
  2. We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.
  3. In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).
  4. Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.
  5. The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.
  相似文献   

9.
  1. Invasive pests pose a great threat to forest, woodland, and urban tree ecosystems. The oak processionary moth (OPM) is a destructive pest of oak trees, first reported in the UK in 2006. Despite great efforts to contain the outbreak within the original infested area of South‐East England, OPM continues to spread.
  2. Here, we analyze data consisting of the numbers of OPM nests removed each year from two parks in London between 2013 and 2020. Using a state‐of‐the‐art Bayesian inference scheme, we estimate the parameters for a stochastic compartmental SIR (susceptible, infested, and removed) model with a time‐varying infestation rate to describe the spread of OPM.
  3. We find that the infestation rate and subsequent basic reproduction number have remained constant since 2013 (with R0 between one and two). This shows further controls must be taken to reduce R0 below one and stop the advance of OPM into other areas of England.
  4. Synthesis. Our findings demonstrate the applicability of the SIR model to describing OPM spread and show that further controls are needed to reduce the infestation rate. The proposed statistical methodology is a powerful tool to explore the nature of a time‐varying infestation rate, applicable to other partially observed time series epidemic data.
  相似文献   

10.
  1. Neighborhood competition models are powerful tools to measure the effect of interspecific competition. Statistical methods to ease the application of these models are currently lacking.
  2. We present the forestecology package providing methods to (a) specify neighborhood competition models, (b) evaluate the effect of competitor species identity using permutation tests, and (cs) measure model performance using spatial cross‐validation. Following Allen and Kim (PLoS One, 15, 2020, e0229930), we implement a Bayesian linear regression neighborhood competition model.
  3. We demonstrate the package''s functionality using data from the Smithsonian Conservation Biology Institute''s large forest dynamics plot, part of the ForestGEO global network of research sites. Given ForestGEO’s data collection protocols and data formatting standards, the package was designed with cross‐site compatibility in mind. We highlight the importance of spatial cross‐validation when interpreting model results.
  4. The package features (a) tidyverse‐like structure whereby verb‐named functions can be modularly “piped” in sequence, (b) functions with standardized inputs/outputs of simple features sf package class, and (c) an S3 object‐oriented implementation of the Bayesian linear regression model. These three facts allow for clear articulation of all the steps in the sequence of analysis and easy wrangling and visualization of the geospatial data. Furthermore, while the package only has Bayesian linear regression implemented, the package was designed with extensibility to other methods in mind.
  相似文献   

11.
  1. Estimating the impacts of anthropogenic disturbances requires an understanding of the habitat‐use patterns of individuals within a population. This is especially the case when disturbances are localized within a population''s spatial range, as variation in habitat use within a population can drastically alter the distribution of impacts.
  2. Here, we illustrate the potential for multilevel binomial models to generate spatial networks from capture–recapture data, a common data source used in wildlife studies to monitor population dynamics and habitat use. These spatial networks capture which regions of a population''s spatial distribution share similar/dissimilar individual usage patterns, and can be especially useful for detecting structured habitat use within the population''s spatial range.
  3. Using simulations and 18 years of capture–recapture data from St. Lawrence Estuary (SLE) beluga, we show that this approach can successfully estimate the magnitude of similarities/dissimilarities in individual usage patterns across sectors, and identify sectors that share similar individual usage patterns that differ from other sectors, that is, structured habitat use. In the case of SLE beluga, this method identified multiple clusters of individuals, each preferentially using restricted areas within their summer range of the SLE.
  4. Multilevel binomial models can be effective at estimating spatial structure in habitat use within wildlife populations sampled by capture–recapture of individuals, and can be especially useful when sampling effort is not evenly distributed. Our finding of a structured habitat use within the SLE beluga summer range has direct implications for estimating individual exposures to localized stressors, such as underwater noise from shipping or other activities.
  相似文献   

12.
  1. Identifying critical uncertainties about ecological systems can help prioritize research efforts intended to inform management decisions. However, exclusively focusing on the ecological system neglects the objectives of natural resource managers and the associated social values tied to risks and rewards of actions.
  2. I demonstrate how to prioritize research efforts for a harvested population by applying expected value of perfect information (EVPI) to harvest decisions made with a density‐independent matrix population model. Research priorities identified by EVPI diverge from priorities identified by matrix elasticity analyses that ignore social utility.
  3. Using a density‐dependent harvest model, the value of information about the intrinsic productivity of a population is shown to be sensitive to the socially determined penalty for implementing a harvest rate that deviates from the goal because of imperfection in estimation.
  4. Synthesis and applications. The effect of including social values into harvest decision‐making depends on the assumed population model, uncertainty in population vital rates, and the particular form of the utility function used to represent risk/reward of harvest. EVPI analyses that include perceived utility of different outcomes can be used by managers seeking to optimize monitoring and research spending. Collaboration between applied ecologists and social scientists that quantitatively measure peoples'' values is needed in many structured decision‐making processes.
  相似文献   

13.
  1. Four events of Placobdella costata sucking human blood are described.
  2. Human blood was sucked by both adult and juvenile specimens of P. costata.
  3. The feeding strategies of juveniles under parental care are presented.
  4. New data on juvenile specimens'' body form are presented.
  5. Information on the potential role of mammals in dispersion and habitat preferences of leeches P. costata is considered.
  相似文献   

14.
  1. When searching for food, great tits (Parus major) can use herbivore‐induced plant volatiles (HIPVs) as an indicator of arthropod presence. Their ability to detect HIPVs was shown to be learned, and not innate, yet the flexibility and generalization of learning remain unclear.
  2. We studied if, and if so how, naïve and trained great tits (Parus major) discriminate between herbivore‐induced and noninduced saplings of Scotch elm (Ulmus glabra) and cattley guava (Psidium cattleyanum). We chemically analyzed the used plants and showed that their HIPVs differed significantly and overlapped only in a few compounds.
  3. Birds trained to discriminate between herbivore‐induced and noninduced saplings preferred the herbivore‐induced saplings of the plant species they were trained to. Naïve birds did not show any preferences. Our results indicate that the attraction of great tits to herbivore‐induced plants is not innate, rather it is a skill that can be acquired through learning, one tree species at a time.
  4. We demonstrate that the ability to learn to associate HIPVs with food reward is flexible, expressed to both tested plant species, even if the plant species has not coevolved with the bird species (i.e., guava). Our results imply that the birds are not capable of generalizing HIPVs among tree species but suggest that they either learn to detect individual compounds or associate whole bouquets with food rewards.
  相似文献   

15.
  1. Kānuka (Kunzea serotina, Myrtaceae) dryland shrubland communities of the lowland plains of South Island (Te Wai Pounamu), New Zealand (Aoteoroa), contain a ground cover largely consisting of mosses, predominantly Hypnum cupressiforme. There has been no previous study of the role of mosses in this threatened habitat which is currently being restored within a contemporary irrigated and intensively farmed landscape that may be incompatible with this component of the ecosystem.
  2. The aim of the present study was to investigate the influence of moss ground cover on hydrology, nitrogen (N) availability and vascular plant interactions, and in relation to nutrient spillover from adjacent farmland. Experimental work was a combination of glasshouse experiments and field‐based studies.
  3. Extremes of soil temperature and moisture were found to be mediated by the moss carpet, which also influenced N speciation; available N declined with moss depth. The moss layer decreased the amount of germination and establishment of vascular plants but, in some cases, enhanced their growth. Spillover of mineral nitrogen and phosphate from farmland enhanced invasion of exotic grasses which may have benefited from conditions provided by the moss carpet.
  4. Synthesis: We found the moss layer to be crucial to ecosystem functioning in these dry habitats with low nutrient substrate. However, when the moss layer is accompanied by nutrient spillover, it has the potential to increase exotic weed encroachment. Our results not only emphasize the importance of non‐vascular plant inclusion in restoration schemes but also highlights the importance of mitigating for nutrient spillover.
  相似文献   

16.
17.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

18.
  1. DNA metabarcoding is an emerging tool used to quantify diet in environments and consumer groups where traditional approaches are unviable, including small‐bodied invertebrate taxa. However, metabarcoding of small taxa often requires DNA extraction from full body parts (without dissection), and it is unclear whether surface contamination from body parts alters presumed diet presence or diversity.
  2. We examined four different measures of diet (presence, rarefied read abundance, richness, and species composition) for a terrestrial invertebrate consumer (the spider Heteropoda venatoria) both collected in its natural environment and fed an offered diet item in contained feeding trials using DNA metabarcoding of full body parts (opisthosomas). We compared diet from consumer individuals surface sterilized to remove contaminants in 10% commercial bleach solution followed by deionized water with a set of unsterilized individuals.
  3. We found that surface sterilization did not significantly alter any measure of diet for consumers in either a natural environment or feeding trials. The best‐fitting model predicting diet detection in feeding trial consumers included surface sterilization, but this term was not statistically significant (β = −2.3, p‐value = .07).
  4. Our results suggest that surface contamination does not seem to be a significant concern in this DNA diet metabarcoding study for consumers in either a natural terrestrial environment or feeding trials. As the field of diet DNA metabarcoding continues to progress into new environmental contexts with various molecular approaches, we suggest ongoing context‐specific consideration of the possibility of surface contamination.
  相似文献   

19.
  1. The availability and investment of energy among successive life‐history stages is a key feature of carryover effects. In migratory organisms, examining how both winter and spring experiences carryover to affect breeding activity is difficult due to the challenges in tracking individuals through these periods without impacting their behavior, thereby biasing results.
  2. Using common eiders Somateria mollissima, we examined whether spring conditions at an Arctic breeding colony (East Bay Island, Nunavut, Canada) can buffer the impacts of winter temperatures on body mass and breeding decisions in birds that winter at different locations (Nuuk and Disko Bay, Greenland, and Newfoundland, Canada; assessed by analyzing stable isotopes of 13‐carbon in winter‐grown claw samples). Specifically, we used path analysis to examine how wintering and spring environmental conditions interact to affect breeding propensity (a key reproductive decision influencing lifetime fitness in female eiders) within the contexts of the timing of colony arrival, pre‐breeding body mass (body condition), and a physiological proxy for foraging effort (baseline corticosterone).
  3. We demonstrate that warmer winter temperatures predicted lower body mass at arrival to the nesting colony, whereas warmer spring temperatures predicted earlier arrival dates and higher arrival body mass. Both higher body mass and earlier arrival dates of eider hens increased the probability that birds would initiate laying (i.e., higher breeding propensity). However, variation in baseline corticosterone was not linked to either winter or spring temperatures, and it had no additional downstream effects on breeding propensity.
  4. Overall, we demonstrate that favorable pre‐breeding conditions in Arctic‐breeding common eiders can compensate for the impact that unfavorable wintering conditions can have on breeding investment, perhaps due to greater access to foraging areas prior to laying.
  相似文献   

20.
  1. Fruit bats (Family: Pteropodidae) are animals of great ecological and economic importance, yet their populations are threatened by ongoing habitat loss and human persecution. A lack of ecological knowledge for the vast majority of Pteropodid species presents additional challenges for their conservation and management.
  2. In Australia, populations of flying‐fox species (Genus: Pteropus) are declining and management approaches are highly contentious. Australian flying‐fox roosts are exposed to management regimes involving habitat modification, through human–wildlife conflict management policies, or vegetation restoration programs. Details on the fine‐scale roosting ecology of flying‐foxes are not sufficiently known to provide evidence‐based guidance for these regimes, and the impact on flying‐foxes of these habitat modifications is poorly understood.
  3. We seek to identify and test commonly held understandings about the roosting ecology of Australian flying‐foxes to inform practical recommendations and guide and refine management practices at flying‐fox roosts.
  4. We identify 31 statements relevant to understanding of flying‐fox roosting structure and synthesize these in the context of existing literature. We then contribute a contemporary, fine‐scale dataset on within‐roost structure to further evaluate 11 of these statements. The new dataset encompasses 13‐monthly repeat measures from 2,522 spatially referenced roost trees across eight sites in southeastern Queensland and northeastern New South Wales.
  5. We show evidence of sympatry and indirect competition between species, including spatial segregation of black and grey‐headed flying‐foxes within roosts and seasonal displacement of both species by little red flying‐foxes. We demonstrate roost‐specific annual trends in occupancy and abundance and provide updated demographic information including the spatial and temporal distributions of males and females within roosts.
  6. Insights from our systematic and quantitative study will be important to guide evidence‐based recommendations on restoration and management and will be crucial for the implementation of priority recovery actions for the preservation of these species in the future.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号