首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.  相似文献   

2.
3.
It was found that human serum stored for 2 months at 4 degrees C (modified serum) induced monocyte proliferation and simultaneous macrophage colony stimulating factor (M-CSF) production by these cells in vitro. Cell number, estimated by DNA content, doubled after 10 days in culture in the presence of modified serum, while it decreased in culture with freshly thawed control serum. As the addition of more than 2.5 ng/ml of recombinant M-CSF significantly supported monocyte survival/proliferation, cells were cultured for 10 days in medium supplemented with control serum, and endogenous M-CSF production was investigated by enzyme-linked immunosorbent assay. M-CSF concentration in the supernatants was 15-30 ng/ml after 10 day in culture with modified serum, a level that might be sufficient for monocyte proliferation. The modified serum induced M-CSF from freshly isolated monocytes, while M-CSF was hardly detected in cultures supplemented with control serum. Assay for peroxidized lipid and agarose gel electrophoresis demonstrated that the modified serum contained more oxidized low density lipoproteins (LDL) than the control serum. Ligands of scavenger receptors, which are receptors for oxidized LDL, such as dextran sulphate, polyinosinic acid, heparin and acetylated LDL also significantly induced M-CSF production from human monocytes, although this was at levels below 2 ng/ml. These results indicate that serum modified by oxidation stimulates monocytes to produce M-CSF resulting in their proliferation, and that signalling via scavenger receptors is one of the mechanisms responsible for this induction of M-CSF.  相似文献   

4.
In this work we provide evidence showing that granulocytes produce macrophage colony-stimulating factor (M-CSF) from the band cell stage and secrete this factor when induced to differentiate into polymorphonuclear cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF). Using an enriched population of myeloid band cells from murine bone marrow, we identified the presence of M-CSF with a chromophore-labelled monoclonal anti-M-CSF antibody. Using ELISA we detected the secretion of M-CSF in the supernatants of cultures of enriched band cells when induced with rhG-CSF to differentiate into mature neutrophils. We also found that M-CSF is the only factor responsible for the colony forming activity in the supernatants and lysates of band cells treated with rhG-CSF.  相似文献   

5.
Although M-CSF has been used for myelosuppression due to chemotherapy in patients with solid tumors, the effect of exogenous M-CSF on tumor angiogenesis has not been studied. In this study we showed that M-CSF has the ability to accelerate solid tumor growth by enhancing angiogenesis with a novel mechanism. M-CSF accelerated intratumoral vessel density in tumors inoculated into mice, although it did not accelerate the proliferation of malignant cells and cultured endothelial cells in vitro. In both the absence and the presence of tumors, M-CSF significantly increased the circulating cells that displayed phenotypic characteristics of endothelial progenitor cells in mice. Moreover, M-CSF treatment induced the systemic elevation of vascular endothelial growth factor (VEGF). VEGFR-2 kinase inhibitor significantly impaired the effect of M-CSF on tumor growth. In vivo, M-CSF increased VEGF mRNA expression in skeletal muscles. Even after treatment with carageenan and anti-CD11b mAb in mice, M-CSF increased VEGF production in skeletal muscles, suggesting that systemic VEGF elevation was attributed to skeletal muscle VEGF production. In vitro, M-CSF increased VEGF production and activated the Akt signaling pathway in C2C12 myotubes. These results suggest that M-CSF promotes tumor growth by increasing endothelial progenitor cells and activating angiogenesis, and the effects of M-CSF are largely based on the induction of systemic VEGF from skeletal muscles.  相似文献   

6.
Recent studies have indicated that cytokines can enhance immunogenicity and promote tumor regression. However, the means for modulating cytokine production are not yet fully investigated. In this study we report the effects of a herbal melanin, extracted from Nigella sativa L., on the production of three cytokines [tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF)], by human monocytes, total peripheral blood mononuclear cells (PBMC) and THP-1 cell line. Cells were treated with variable concentrations of melanin and the expression of TNF-alpha, IL-6 and VEGF mRNA in cell lysates and secretion of proteins in the supernatants were detected by RT-PCR and ELISA. Melanin induced TNF-alpha, IL-6 and VEGF mRNA expression by the monocytes, PBMC and THP-1 cell line. On the protein level, melanin significantly induced TNF-alpha and IL-6 protein production and inhibited VEGF production by monocytes and PBMC. In the THP-1 cell line melanin induced production of all three cytokine proteins. These observations raise the prospects of using N. sativa L. melanin for treatment of diseases associated with imbalanced cytokine production and for enhancing cancer and other immunotherapies.  相似文献   

7.
Monocytes play an important role in collateral vessel formation (arteriogenesis) by attaching to activated endothelium and by invading the walls of innate collateral vessels where they produce growth factors. Previous studies have demonstrated that this process can be promoted by several chemokines and growth factors. In this study we examined the interaction between monocytes and endothelium under stimulation of the angiogenic agent vascular endothelial growth factor (VEGF). We report here the novel finding that VEGF stimulates the expression of the alphaL-, alphaM- and beta2-integrin monomers. In functional assays and by using neutralizing antibodies it was shown that VEGF stimulates adhesion of monocytes to human umbilical vein endothelial cells (HUVEC), and increased transmigration through endothelial monolayers is dependent on interaction of monocyte beta2-integrins with its endothelial counter ligand ICAM-1. Based on these in vitro data we hypothesize that the positive effect of VEGF on arteriogenesis may involve monocyte activation.  相似文献   

8.
IgG deposition at tissue sites characteristically leads to macrophage accumulation and organ injury. Although the mechanism by which deposited IgG induces tissue injury is not known, we have recently demonstrated that deposited IgG stimulates the release of IL-8 and monocyte chemoattractant protein-1 from normal human monocytes, which may drive inflammation. Since IgG also induces macrophage accumulation in these diseases, we hypothesized that deposited IgG protects monocytes from apoptosis. As an in vitro model of the effect of deposited IgG on monocyte survival, monocyte apoptosis was studied after FcgammaR cross-linking. Monocytes cultured on immobilized IgG, which induces FcgammaR cross-linking, were protected from apoptosis, whereas monocytes cultured with equivalent concentrations of F(ab')2 IgG or 50 times higher concentrations of soluble IgG, neither of which induces FcgammaR cross-linking, were not protected. Moreover, this protection was transferable, as supernatants from immobilized IgG-stimulated monocytes protected freshly isolated monocytes from apoptosis and contained functional M-CSF, a known monocyte survival factor. M-CSF mediated the monocyte survival induced by FcgammaR cross-linking, as neutralizing anti-human M-CSF Abs blocked the monocyte protection provided by either immobilized IgG or IgG-stimulated monocyte supernatants. These findings demonstrate a novel mechanism by which deposited IgG targets tissue macrophage accumulation through FcgammaR-mediated M-CSF release. This pathway may play an important role in promoting and potentiating IgG-mediated tissue injury.  相似文献   

9.
Although Epstein-Barr virus (EBV)-associated malignancies are primarily composed of cells with one of the latent forms of EBV infection, a small subset of tumor cells containing the lytic form of infection is often observed. Whether the rare lytically infected tumor cells contribute to the growth of the latently infected tumor cells is unclear. Here we have investigated whether the lytically infected subset of early-passage lymphoblastoid cell lines (LCLs) could potentially contribute to tumor growth through the production of angiogenesis factors. We demonstrate that supernatants from early-passage LCLs infected with BZLF1-deleted virus (Z-KO LCLs) are highly impaired in promoting endothelial cell tube formation in vitro compared to wild-type (WT) LCL supernatants. Furthermore, expression of the BZLF1 gene product in trans in Z-KO LCLs restored angiogenic capacity. The supernatants of Z-KO LCLs, as well as supernatants from LCLs derived with a BRLF1-deleted virus (R-KO LCLs), contained much less vascular endothelial growth factor (VEGF) in comparison to WT LCLs. BZLF1 gene expression in Z-KO LCLs restored the VEGF level in the supernatant. However, the cellular level of VEGF mRNA was similar in Z-KO, R-KO, and WT LCLs, suggesting that lytic infection may enhance VEGF translation or secretion. Interestingly, a portion of the vasculature in LCL tumors in SCID mice was derived from the human LCLs. These results suggest that lytically infected cells may contribute to the growth of EBV-associated malignancies by enhancing angiogenesis. In addition, as VEGF is a pleiotropic factor with effects other than angiogenesis, lytically induced VEGF secretion may potentially contribute to viral pathogenesis.  相似文献   

10.
Normal and neoplastic epithelial cells produce growth factors that can affect cells from different lineages. Epithelial ovarian cancers produce M-CSF and IL-6. In the present study, production of these cytokines has been measured in the apparently normal epithelial cells from which epithelial ovarian neoplasms are thought to arise. Epithelial cells from the surface of premenopausal human ovaries were established in short-term cultures. The cells bound anti-cytokeratin antibodies and exhibited characteristic epithelial morphology by light and transmission electron microscopy. M-CSF and IL-6 were detected in supernatants from cultures of these cells, using assays specific for each factor. Cytokine levels were comparable to those in supernatants from ovarian and breast cancer cell lines. M-CSF expression could also be demonstrated by immunohistochemical analysis with specific rabbit heteroantiserum. Thus, M-CSF and IL-6 are produced constitutively by normal as well as by neoplastic ovarian epithelium.  相似文献   

11.
EBV infects human B lymphocytes and induces them to proliferate, to produce Ig, and to give rise to immortal cell lines. Although the mechanisms of B cell activation by EBV are largely unknown, the continuous proliferation of EBV-immortalized B cells is dependent, at least in part, upon autocrine growth factors produced by the same EBV-infected B cells. In the present studies we have examined the influence of monocytes on B cell activation by EBV and found that unlike peripheral blood T cells and B cells, monocytes enhance by as much as 30- to 50-fold virus-induced B cell proliferation and Ig production. Upon activation with LPS, monocytes secrete a growth factor activity that promotes both proliferation and Ig secretion in EBV-infected B cells and thus reproduces the effects of monocytes in these cultures. Unlike a number of other factors, rIFN-beta 2/B cell stimulatory factor 2 (BSF-2)/IL-6 stimulates the growth of human B cells activated by EBV in a manner similar to that induced by activated monocyte supernatants. In addition, an antiserum to IFN-beta that recognizes both IFN-beta 1 and IFN-beta 2 completely neutralizes the B cell growth factor activity of activated monocyte supernatants. These findings demonstrate that IFN-beta 2/BSF-2/IL-6 is a growth factor for human B cells activated by EBV and suggest that this molecule is responsible for B cell growth stimulation induced by activated monocyte supernatants. We have examined the possibility that IFN-beta 2/BSF-2/IL-6 might also be responsible for B cell growth stimulation by supernatants of EBV-immortalized B cells and thus may function as an autocrine growth factor. However, IFN-beta 2/BSF-2/IL-6 is not detectable in supernatants of EBV-immortalized B cells by immunoprecipitation. Also, an antiserum to IFN-beta that neutralizes IFN-beta 2/BSF-2/IL-6 fails to neutralize autocrine growth factor activity. This suggests that autocrine growth factors produced by EBV-immortalized B cells are distinct from IFN-beta 2/BSF-2/IL-6. Thus, the continuous proliferation of EBV-immortalized B cells is enhanced by either autocrine or paracrine growth factors. One of the mediators with paracrine growth factor activity is IFN-beta 2/BSF-2/IL-6.  相似文献   

12.
A culture system that identifies the precursor of murine bone marrow fibroblastic stromal cells (stroma-initiating cells, SIC) has been developed. In this system, mature fibroblasts are depleted by adherence to plastic dishes and the nonadherent cells are seeded at a low density, which results in the formation of colonies composed of fibroblastic cells. Macrophage colony-stimulating factor (M-CSF) has been shown to accelerate the colony formation in the system. In this study, we examined the stroma-inducing activity of a number of cytokines. Neither granulocyte-CSF, stem cell factor, interleukin (IL)-1, IL-6, transforming growth factor, epidermal growth factor, insulin-like growth factor, platelet-derived growth factor, nor fibroblast growth factor showed the activity. Similarly, tumor necrosis factor (TNF) did not show any stroma-inducing activity, but the factor inhibited the stromal colony formation induced by M-CSF. In this study, we found that granulocyte/macrophage-CSF (GM-CSF) and IL-3, as well as M-CSF had the stroma-inducing activity. Neither an additive nor synergistic effect was observed when the three factors were assayed in various combinations. The stroma-inducing activity of M-CSF, GM-CSF and IL-3 was observed even if lineage-negative bone marrow cells were used as target cells, suggesting that mature hematopoietic cells such as macrophages and granulocytes were not involved in the induction of stromal colony formation by these factors. Our results raise the possibility that GM-CSF and IL-3 as well as M-CSF stimulate the proliferation or differentiation of the precursor of bone marrow fibroblastic stromal cells.  相似文献   

13.
Despite its potent ability to inhibit proinflammatory cytokine synthesis, interleukin (IL)-10 has a marginal clinical effect in rheumatoid arthritis (RA) patients. Recent evidence suggests that IL-10 induces monocyte/macrophage maturation in cooperation with macrophage-colony stimulating factor (M-CSF). In the present study, we found that the inducible subunit of the IL-10 receptor (IL-10R), type 1 IL-10R (IL-10R1), was expressed at higher levels on monocytes in RA than in healthy controls, in association with disease activity, while their expression of both type 1 and 2 tumour necrosis factor receptors (TNFR1/2) was not increased. The expression of IL-10R1 but not IL-10R2 was augmented on monocytes cultured in the presence of RA synovial tissue (ST) cell culture supernatants. Cell surface expression of TNFR1/2 expression on monocytes was induced by IL-10, and more efficiently in combination with M-CSF. Two-color immunofluorescence labeling of RA ST samples showed an intensive coexpression of IL-10R1, TNFR1/2, and M-CSF receptor in CD68+ lining macrophages. Adhered monocytes, after 3-day preincubation with IL-10 and M-CSF, could produce more IL-1β and IL-6 in response to TNF-α in the presence of dibutyryl cAMP, as compared with the cells preincubated with or without IL-10 or M-CSF alone. Microarray analysis of gene expression revealed that IL-10 activated various genes essential for macrophage functions, including other members of the TNFR superfamily, receptors for chemokines and growth factors, Toll-like receptors, and TNFR-associated signaling molecules. These results suggest that IL-10 may contribute to the inflammatory process by facilitating monocyte differentiation into TNF-α-responsive macrophages in the presence of M-CSF in RA.  相似文献   

14.
Angiogenesis is a process required not only for embryonal development but is encountered in wound healing and in pathological situations such as tumour growth. In vitro, formation of capillary-like structures can be induced by seeding human microvascular endothelial cells (HDMECs) on top of a fibrin matrix in the presence of phorbol 12-myristate 13-acetate (PMA) as a stimulating agent. In this study, we show that supernatants collected from high-invasive melanoma cells (BLM) induce the formation of tubular structures similar to PMA treatment whereas supernatants from low-invasive cells (WM164) did not. Analysis of proteins secreted into the supernatant of both melanoma cell lines identified differential expression of several pro-angiogenic proteins in high- and low-invasive melanoma cells. Vascular endothelial growth factor (VEGF) was strongly expressed by high- but not by low-invasive melanoma cells. Neutralisation of VEGF as well as inhibition of matrix metalloproteases (MMPs) using the broad spectrum MMP inhibitor 1,10-phenanthroline, both strongly reduced the melanoma-induced tube formation. PMA treatment of HDMECs on a fibrin matrix stimulated MT1-MMP synthesis, indicating that this protease is involved in PMA-induced angiogenesis. In addition, stimulation of HDMECs by supernatants of BLM melanoma cells resulted in a strong induction of ADAM-15, which is known to act as a metalloproteinase. In conclusion, these results show that VEGF released by melanoma cells is an important mediator of neo-vascularisation and that this process depends on the presence of metalloproteinases.  相似文献   

15.
Enhancement of human monocyte tumoricidal activity by recombinant M-CSF   总被引:8,自引:0,他引:8  
Activated monocytes are an important component of immunologic defense against neoplastic disease. A variety of agents capable of inducing tumoricidal activity have been described, including bacterial LPS, IFN-gamma, IL-1, IL-2, TNF, and GM-CSF. We now show that pretreatment of monocytes with recombinant human macrophage-specific colony stimulating factor (M-CSF) augments the tumoricidal activity of human peripheral blood monocytes induced by other activating agents. Monocytes were preincubated for three days with M-CSF at 10(3) U/ml, washed, and treated for an additional two days with secondary activators. Tumoricidal activity was measured in a 6-h 51Cr-release assay using NK-resistant WEHI 164 cells that had been treated with actinomycin D. Pretreatment of monocytes with M-CSF significantly increased tumoricidal activity induced by LPS, IFN gamma, LPS plus IFN gamma, and LPS plus PMA. Pretreatment with IL-1, IL-2, IL-3, IL-4, or GM-CSF was not as effective as M-CSF in increasing tumoricidal activity. Enhanced tumoricidal activity was directly correlated to the increased TNF production resulting from M-CSF pretreatment. TNF antiserum completely blocked tumoricidal activity, demonstrating that TNF was responsible for the M-CSF-mediated increase in tumor cell lysis. M-CSF pretreatment also enhanced non-TNF mediated tumoricidal activity by monocytes, as seen by increased killing of the TNF-resistant target P815. This study demonstrated that in addition to the role of M-CSF in the proliferation and differentiation of monocyte/macrophage precursors, M-CSF also augments an effector function of mature blood monocytes.  相似文献   

16.
Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) play a critical role in tumor-associated angiogenesis and have become the targets of anti-tumor therapy. The BALB/c mice were immunized with VEGF/bFGF complex peptide (VBP3) constructed with different epitope peptides of human VEGF and bFGF. The results of the immunogenicity showed that the VBP3 could effectively stimulate immune response in mice and elicit the mice to produce high titer specific anti-VEGF and anti-bFGF antibodies (anti-VBP3 antibodies). The polyclonal anti-VBP3 antibodies separated from the mouse immune serum could effectively inhibit the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) and block the proliferation and migration of lung cancer A549 cells. Besides, the anti-VBP3 antibodies could effectively inhibit tumor growth and tumor angiogenesis in BABL/c nude mice. The results demonstrated that the VBP3 complex peptide could elicit the body to produce the high titer anti-VEGF and anti-bFGF antibodies, which showed anti-tumor and anti-angiogenic effects in vitro and in vivo. The results revealed that the VBP3 complex peptide could be used as a potential peptide vaccine in tumor therapy.  相似文献   

17.
Mouse receptor activator of NF-??B ligand (RANKL), which induces osteoclastogenesis from monocytes or macrophages, was independently cloned by three groups in 1997. Mouse osteoclasts have been induced from peripheral monocytes stimulated by RANKL and macrophage colony-stimulating factor (M-CSF) both in vitro and in vivo; however, the mechanism of primate osteoclastogenesis has not been studied. In addition, the effects of human RANKL on primate osteoclastogenesis remain to be elucidated. Here, we investigated the effect of human RANKL on the osteoclastogenesis of monocytes from five subspecies of primates. Human RANKL induced osteoclastogenesis of all the primates. In addition, human RANKL induced pit formation by osteoclasts from monocytes of the crab-eating macaque. We also demonstrated that the primate osteoclastogenesis was inhibited by a novel peptide, which inhibited human osteoclastogenesis in our previous study. Thus, these findings clearly demonstrated that human RANKL induces primate osteoclastogenesis in the presence of human M-CSF.  相似文献   

18.
A recombinant form of human migration inhibitory factor (rMIF) obtained from COS-1 cells transfected with MIF-specific cDNA is able to activate cultured human peripheral blood monocytes and monocyte-derived macrophages, in a dose-dependent manner to become cytotoxic for tumor cells in vitro. The cytotoxicity exhibited by macrophages treated with rMIF is > or = 30% above that of cells incubated with control supernatants or with media and peaks 72 hr after the addition of tumor targets. rMIF also induces macrophages to produce tumor necrosis factor (TNF-alpha) and interleukin-1 beta (IL-1 beta). These results demonstrate that rMIF is able to modulate macrophage functions and plays a role in cell-mediated immune response.  相似文献   

19.
Tumor growth and metastasis are dependent on angiogenesis, and endothelial cell invasion and migration are apparent means of regulating tumor progression. We report here that saxatilin, a snake venom-derived disintegrin, suppresses the angiogenesis-inducing properties of NCI-H460 human lung cancer cells. Culture supernatants of NCI-H460 cells are able to induce human umbilical vascular endothelial cell (HUVEC) invasion and tube formation. However, treatment of the cancer cells with saxatilin resulted in reduced angiogenic activity of the culture supernatant. This suppressed angiogenic property was found to be associated with the level of vascular endothelial growth factor (VEGF) in the culture supernatant. Further experimental evidence indicated that saxatilin inhibits VEGF production in NCI-H460 cells by affecting hypoxia induced factor-1 alpha (HIF-1 alpha) expression via the Akt pathway.  相似文献   

20.
The effects of macrophage colony-stimulating factor (M-CSF or CSF-1) on the survival, proliferation, maturation and activation of human blood monocytes were examined. M-CSF (100-1,000 U/ml) doubled the number of monocytes surviving after eight days in culture and accelerated the usual increase in cell volume. Antiserum to M-CSF abolished both of these effects. There was no sizable increase in 3H-thymidine incorporation in monocytes over this time period. Of various factors tested, including gamma-interferon (gamma-IFN), interleukin (IL) 1 alpha, granulocyte CSF (G-CSF), platelet-derived growth factor (PDGF), and lipopolysaccharide (LPS), only granulocyte-macrophage CSF (GM-CSF) could also enhance survival and augment cell volume. While antiserum to human M-CSF eliminated the increase in survival induced by GM-CSF, it could not ablate the GM-CSF-stimulated increase in monocyte cell volume. Monocyte cell surface markers that increase with maturation (i.e., Fc gamma RIII) or with activation (i.e., Fc gamma RI) were unaffected by incubation with M-CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号