首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells.  相似文献   

2.
The Src family of protein kinases (SFKs) mediates mitogenic signal transduction, and constitutive SFK activation is associated with tumorigenesis. To prevent constitutive SFK activation, the catalytic activity of SFKs in normal mammalian cells is suppressed mainly by two inhibitors called C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK), which inactivate SFKs by phosphorylating a consensus tyrosine near the C terminus of SFKs (Y(T)). The phosphorylated Y(T) intramolecularly binds to the SH2 domain of SFKs. This interaction, known as pY(T)/SH2 interaction, together with binding between the SH2 kinase linker and the SH3 domain of SFKs (linker/SH3 interaction) stabilizes SFKs in a "closed" inactive conformation. We previously discovered an alternative mechanism CHK employs to inhibit SFKs. This mechanism, referred to as the non-catalytic inhibitory mechanism, involves tight binding of CHK to SFKs; the binding alone is sufficient to inhibit SFKs. Herein, we constructed multiple active conformations of an SFK member, Hck, by systematically disrupting the two inhibitory interactions. We found that CHK employs the non-catalytic mechanism to inactivate these active conformations of Hck. However, CHK does not bind Hck when it adopts the inactive conformation in which both inhibitory interactions are intact. These data indicate that binding of CHK to SFKs via the non-catalytic mechanism is governed by the conformations of SFKs. Although CSK is also an inhibitor of SFKs, it does not inhibit SFKs by a similar non-catalytic mechanism. Thus, the non-catalytic inhibitory mechanism is a unique property of CHK that allows it to down-regulate multiple active conformations of SFKs.  相似文献   

3.
The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the β3-αC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the β3-αC loop. The mutation of the β3-αC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the β3-αC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain.  相似文献   

4.
Csk homologous kinase (CHK), a member of the Csk regulatory tyrosine kinase family, is expressed primarily in brain and hematopoietic cells. The role of CHK in the nervous system is as yet unknown. Using PC12 cells as a model system of neuronal cells, we show that CHK participates in signaling mediated by TrkA receptors. CHK was found to be associated with tyrosine-phosphorylated TrkA receptors in PC12 cells upon stimulation with NGF. Binding assays and far Western blotting analysis, using glutathione S-transferase fusion proteins containing the Src homology 2 (SH2) and SH3 domains of CHK, demonstrate that the SH2 domain of CHK binds directly to the tyrosine-phosphorylated TrkA receptors. Site-directed mutagenesis of TrkA cDNA, as well as phosphopeptide inhibition of the in vitro interaction of the CHK-SH2 domain or native CHK with TrkA receptors, indicated that the residue Tyr-785 on TrkA is required for its binding to the CHK-SH2 domain upon NGF stimulation. In addition, overexpression of CHK resulted in enhanced activation of the mitogen-activated protein kinase pathway upon NGF stimulation, and microinjection of anti-CHK antibodies, but not anti-Csk antibodies, inhibited neurite outgrowth of PC12 cells in response to NGF. Thus, CHK is a novel signaling molecule that participates in TrkA signaling, associates directly with TrkA receptors upon NGF stimulation, and is involved in neurite outgrowth of PC12 cells in response to NGF.  相似文献   

5.
Bcr-Abl is the oncogenic protein-tyrosine kinase responsible for chronic myelogenous leukemia. Recently, we observed that inhibition of myeloid Src family kinase activity (e.g. Hck, Lyn, and Fyn) induces growth arrest and apoptosis in Bcr-Abl-transformed cells, suggesting that cell transformation by Bcr-Abl involves Src family kinases (Wilson, M. B., Schreiner, S. J., Choi, H. J., Kamens, J., and Smithgall, T. E. (2002) Oncogene 21, 8075-8088). Here, we report the unexpected observation that Hck, Lyn, and Fyn strongly phosphorylate the SH3-SH2 region of Bcr-Abl. Seven phosphorylation sites were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Tyr89 and Tyr134 in the Abl-derived SH3 domain; Tyr147 in the SH3-SH2 connector; and Tyr158, Tyr191, Tyr204, and Tyr234 in the SH2 domain. SH3 domain Tyr89, the most prominent phosphorylation site in vitro, was strongly phosphorylated in chronic myelogenous leukemia cells in a Src family kinase-dependent manner. Substitution of the SH3-SH2 tyrosine phosphorylation sites with phenylalanine substantially reduced Bcr-Abl-mediated transformation of TF-1 myeloid cells to cytokine independence. The positions of these tyrosines in the crystal structure of the c-Abl core and the transformation defect of the corresponding Bcr-Abl mutants together suggest that phosphorylation of the SH3-SH2 region by Src family kinases impacts Bcr-Abl protein conformation and signaling.  相似文献   

6.
The Src family tyrosine kinase Hck possesses two phosphorylation sites, Tyr(527) and Tyr(416), that affect the catalytic activity in opposite ways. When phosphorylated, Tyr(527) and residues C-terminal to it are involved in an inhibitory intramolecular interaction with the SH2 domain. However, this sequence does not conform to the sequence of the high affinity SH2 ligand, pYEEI. We mutated this sequence to YEEI and show that this mutant form of Hck cannot be activated by exogenous SH2 ligands. The SH3 domain of Hck is also involved in an inhibitory interaction with the catalytic domain. The SH3 ligand Nef binds to and activates YEEI-Hck mutant in a similar manner to wild-type Hck, indicating that disrupting the SH3 interaction overrides the strengthened SH2 interaction. The other phosphorylation site, Tyr(416), is the autophosphorylation site in the activation loop. Phosphorylation of Tyr(416) is required for Hck activation. We mutated this residue to alanine and characterized its catalytic activity. The Y416A mutant shows a higher K(m) value for peptide and a lower V(max) than autophosphorylated wild-type Hck. We also present evidence for cross-talk between the activation loop and the intramolecular binding of the SH2 and SH3 domains.  相似文献   

7.
Src protein-tyrosine kinase contains a myristoylation motif, a unique region, an Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a C-terminal tail. The C-terminal tail contains a Tyr residue, Tyr527. Phosphorylation of Tyr527 triggers Src inactivation, caused by Tyr(P)527 binding to the SH2 domain. In this study, we demonstrated that a conformational contribution, not affinity, is the predominant force for the intramolecular SH2-Tyr(P)527 binding, and we characterized the structural basis for this conformational contribution. First, a phosphopeptide mimicking the C-terminal tail is an 80-fold weaker ligand than the optimal phosphopeptide, pYEEI, and similar to a phosphopeptide containing three Ala residues following Tyr(P) in binding to the Src SH2 domain. Second, the SH2-Tyr(P)527 binding is largely independent of the amino acid sequence surrounding Tyr(P)527, and only slightly decreased by an inactivating mutation in the SH2 domain. Furthermore, even the unphosphorylated C-terminal tail with the sequence of YEEI suppresses Src activity by binding to the SH2 domain. These experiments demonstrate that very weak affinity is sufficient for the SH2-Tyr(P)527 binding in Src inactivation. Third, the effective intramolecular SH2-Tyr(P)527 binding is attributed to a conformational contribution that requires residues Trp260 and Leu255. Although the SH3 domain is essential for Src inactivation by Tyr(P)527, it does not contribute to the SH2-Tyr(P)527 binding. These findings suggest a conformation-based Src inactivation model, which provides a unifying framework for understanding Src activation by a variety of mechanisms.  相似文献   

8.
Alix/AIP1 is an adaptor protein involved in regulating the function of receptor and cytoskeleton-associated tyrosine kinases. Here, we investigated its interaction with and regulation by Src. Tyr319 of Alix bound the isolated Src homology-2 (SH2) domain and was necessary for interaction with intact Src. A proline-rich region in the C terminus of Alix bound the Src SH3 domain, but this interaction was dependent on the release of the Src SH2 domain from its Src internal ligand either by interaction with Alix Tyr319 or by mutation of Src Tyr527. Src phosphorylated Alix at a C-terminal region rich in tyrosines, an activity that was stimulated by the presence of the Alix binding partner SETA/CIN85. Phosphorylation of Alix by Src caused it to translocate from the membrane and cytoskeleton to the cytoplasm and reduced its interaction with binding partners SETA/CIN85, epidermal growth factor receptor, and Pyk2. As a consequence of this, Src antagonized the negative regulation of receptor tyrosine kinase internalization and cell adhesion by Alix. We propose a model whereby Src antagonizes the effects of Alix by phosphorylation of its C terminus, leading to the disruption of interactions with target proteins.  相似文献   

9.
SHPS-1 is an immunoglobulin superfamily protein with four immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic region. Various neurotrophic factors induce the tyrosine phosphorylation of SHPS-1 and the association of SHPS-1 with the protein tyrosine phosphatase SHP-2. Using a yeast two-hybrid screen, we identified a protein tyrosine kinase, Csk-homologous kinase (CHK), as an SHPS-1-interacting protein. Immunoprecipitation and pull-down assays using glutathione S -transferase (GST) fusion proteins containing the Src homology 2 (SH2) domain of CHK revealed that CHK associates with tyrosine-phosphorylated SHPS-1 via its SH2 domain. HIS3 assay in a yeast two-hybrid system using the tyrosine-to-phenylalanine mutants of SHPS-1 indicated that the first and second ITIMs of SHPS-1 are required to bind CHK. Over-expression of wild-type CHK, but not a kinase-inactive CHK mutant, enhanced the phosphorylation of SHPS-1 and its subsequent association with SHP-2. CHK phosphorylated each of four tyrosines in the cytoplasmic region of SHPS-1 in vitro . Co-expression of SHPS-1 and CHK enhanced neurite outgrowth in PC12 cells. Thus, CHK phosphorylates and associates with SHPS-1 and is involved in neural differentiation via SHP-2 activation.  相似文献   

10.
Src kinase is a crucial mediator of adhesion-related signaling and motility. Src binds to focal adhesion kinase (FAK) through its SH2 domain and subsequently activates it for phosphorylation of downstream substrates. In addition to this binding function, data suggested that the SH2 domain might also perform an important role in targeting Src to focal adhesions (FAs) to enable further substrate phosphorylations. To examine this, we engineered an R175L mutation in cSrc to prevent the interaction with FAK pY397. This constitutively open Src kinase mediated up-regulated substrate phosphorylation in SYF cells but was unable to promote malignant transformation. Significantly, SrcR175L cells also had a profound motility defect and an impaired FA generation capacity. Importantly, we were able to recapitulate wild-type motile behavior and FA formation by directing the kinase to FAs, clearly implicating the SH2 domain in recruitment to FAK and indicating that this targeting capacity, and not simply Src-FAK scaffolding, was critical for normal Src function.  相似文献   

11.
Substantial evidence exists supporting the notion that Csk and CHK, two negative regulatory kinases of the Src tyrosine kinase family, play distinct roles during development of the nervous system. One of the differences relies on the effects of both kinases on the MAPK transduction pathway. Specifically, CHK was shown to enhance MAPK signaling, while the role of Csk was unclear. In this work, we compared the effect of CHK versus Csk on MAPK signaling and elucidated the signaling pathway mediated by CHK leading to the activation of Erk1/2. Exogenous expression of wild-type CHK, but not Csk or a dead-kinase mutant of CHK, resulted in enhanced Erk1/2 phosphorylation in PC12 cells. CHK inhibited Src activity following stimulation of the cells with NGF. However, stimulation of Erk1/2 activation by CHK was independent of the NGF stimulation or the inhibition of Src kinase by CHK. CHK induced a complex formation between SHP-2 and Grb2, subsequently leading to the increased activity of Ras as well as Erk1/2 activation via the Raf/MEK1/2 pathway. Down-regulation of the expression of endogenous CHK by RNAi in PC12 cells led to a significant decrease in MAPK activation following NGF stimulation. Stimulation of CHK-overexpressing PC12 cells with EGF induced neurite outgrowth in the majority of cells. Taken together, this study describes for the first time the Src-independent actions of CHK and provides novel insights into CHK function in neural cells.  相似文献   

12.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its carboxy-terminal tail. A kinase that phosphorylates Tyr527, called Csk, has recently been identified. We expressed c-Src in yeast to test the role of the SH2 and SH3 domains of Src in the negative regulation exerted by Tyr527 phosphorylation. Inducible expression of c-Src in Schizosaccharomyces pombe caused cell death. Co-expression of Csk counteracted this effect. Src proteins mutated in either the SH2 or SH3 domain were as lethal as wild type c-Src, but were insensitive to Csk, even though they were substrates for Csk in vivo. Peptide binding experiments revealed that Src proteins with mutant SH3 domains adopted a conformation in which the SH2 domain was not interacting with the tail. These data support the model of an SH2 domain-phosphorylated tail interaction repressing c-Src activity, but expand it to include a role for the SH3 domain. We propose that the SH3 domain contributes to the maintenance of the folded, inactive configuration of the Src molecule by stabilizing the SH2 domain-phosphorylated tail interaction. Moreover, the system we describe here allows for further study of the regulation of tyrosine kinases in a neutral background and in an organism amenable to genetic analysis.  相似文献   

13.
Src homology 2 (SH2) domains are found in a variety of signaling proteins and bind phosphotyrosine-containing peptide sequences. To explore the binding properties of the SH2 domain of the Src protein kinase, we used immobilized phosphopeptides to bind purified glutathione S-transferase-Src SH2 fusion proteins. With this assay, as well as a free-peptide competition assay, we have estimated the affinities of the Src SH2 domain for various phosphopeptides relative to a Src SH2-phosphopeptide interaction whose Kd has been determined previously (YEEI-P; Kd = 4 nM). Two Src-derived phosphopeptides, one containing the regulatory C-terminal Tyr-527 and another containing the autophosphorylation site Tyr-416, bind the Src SH2 domain in a specific though low-affinity manner (with about 10(4)-lower affinity than the YEEI-P peptide). A platelet-derived growth factor receptor (PDGF-R) phosphopeptide containing Tyr-857 does not bind appreciably to the Src SH2 domain, suggesting it is not the PDGF-R binding site for Src as previously reported. However, another PDGF-R-derived phosphopeptide containing Tyr-751 does bind the Src SH2 domain (with an affinity approximately 2 orders of magnitude lower than that of YEEI-P). All of the phosphopeptides which bind to the Src SH2 domain contain a glutamic acid at position -3 or -4 with respect to phosphotyrosine; changing this residue to alanine greatly diminishes binding. We have also tested Src SH2 mutants for their binding properties and have interpreted our results in light of the recent crystal structure solution for the Src SH2 domain. Mutations in various conserved and nonconserved residues (R155A, R155K, N198E, H201R, and H201L) cause slight reductions in binding, while two mutations cause severe reductions. The W148E mutant domain, which alters the invariant tryptophan that marks the N-terminal border of the SH2 domain, binds poorly to phosphopeptides. Inclusion of the SH3 domain in the fusion protein partially restores the binding by the W148E mutant. A change in the invariant arginine that coordinates twice with phosphotyrosine in the peptide (R175L) results in a nearly complete loss of binding. The R175L mutant does display high affinity for the PDGF-R peptide containing Tyr-751, via an interaction that is at least partly phosphotyrosine independent. We have used this interaction to show that the R175L mutation also disrupts the intramolecular interaction between the Src SH2 domain and the phosphorylated C terminus within the context of the entire Src protein; thus, the binding properties observed for mutant domains in an in vitro assay appear to mimic those that occur in vivo.  相似文献   

14.
Although C-terminal Src kinase (CSK)-homologous kinase (CHK) is generally believed to inactivate Src-family tyrosine kinases (SFKs) by phosphorylating their consensus C-terminal regulatory tyrosine (Tyr(T)), exactly how CHK inactivates SFKs is not fully understood. Herein, we report that in addition to phosphorylating Tyr(T), CHK can inhibit SFKs by a novel non-catalytic mechanism. First, CHK directly binds to the SFK members Hck, Lyn, and Src to form stable protein complexes. The complex formation is mediated by a non-catalytic Tyr(T)-independent mechanism because it occurs even in the absence of ATP or when Tyr(T) of Hck is replaced by phenylalanine. Second, the non-catalytic CHK-SFK interaction alone is sufficient to inactivate SFKs by inhibiting the catalytic activity of autophosphorylated SFKs. Third, CHK and Src co-localize to specific plasma membrane microdomains of rat brain cells, suggesting that CHK is in close proximity to Src such that it can effectively inactivate Src in vivo. Fourth, native CHK.Src complex exists in rat brain, and recombinant CHK.Hck complex exists in transfected HEK293T cells, implying that CHK forms stable complexes with SFKs in vivo. Taken together, our findings suggest that CHK inactivates SFKs (i) by phosphorylating their Tyr(T) and (ii) by this novel Tyr(T)-independent mechanism involving direct binding of CHK to SFKs. It has been documented that autophosphorylated SFKs can still be active, in some cases even when their Tyr(T) is phosphorylated. Thus, the ability of the Tyr(T)-independent mechanism to suppress the activity of both non-phosphorylated and autophosphorylated SFKs represents a fail-safe measure employed by CHK to down-regulate SFK signaling under all circumstances.  相似文献   

15.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

16.
CHK1 and CHK2 are key mediators that link the machineries that monitor DNA integrity to components of the cell cycle engine. Despite the similarity and potential redundancy in their functions, CHK1 and CHK2 are unrelated protein kinases, each having a distinctive regulatory domain. Here we compare how the regulatory domains of human CHK1 and CHK2 modulate the respective kinase activities. Recombinant CHK1 has only low basal activity when expressed in cultured cells. Surprisingly, disruption of the C-terminal regulatory domain activates CHK1 even in the absence of stress. Unlike the full-length protein, C-terminally truncated CHK1 displays autophosphorylation, phosphorylates CDC25C on Ser(216), and delays cell cycle progression. Intriguingly, enzymatic activity decreases when the entire regulatory domain is removed, suggesting that the regulatory domain contains both inhibitory and stimulatory elements. Conversely, the kinase domain suppresses Ser(345) phosphorylation, a major ATM/ATR phosphorylation site in the regulatory domain. In marked contrast, CHK2 expressed in either mammalian cells or in bacteria is already active as a kinase against itself and CDC25C and can delay cell cycle progression. Unlike CHK1, disruption of the regulatory domain of CHK2 abolishes its kinase activity. Moreover, the regulatory domain of CHK2, but not that of CHK1, can oligomerize. Finally, CHK1 but not CHK2 is phosphorylated during the spindle assembly checkpoint, which correlates with the inhibition of the kinase. The mitotic phosphorylation of CHK1 requires the regulatory domain, does not involve Ser(345), and is independent on ATM. Collectively, these data reveal the very different mode of regulation between CHK1 and CHK2.  相似文献   

17.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

18.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

19.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

20.
Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号