首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonization of the roots of beans, alfalfa, onions, red clover, corn, and four barley cultivars (Bonanza, Klondike, Gateway 63, and Olli) by Glomus dimorphicum Boyetchko and Tewari, a vesicular-arbuscular mycorrhizal fungus isolated from a barley field in Alberta, Canada, was studied under greenhouse conditions. Infection levels were low in all four barley cultivars but were higher in beans, alfalfa, and onions and were highest in red clover and corn roots. The infection patterns of G. dimorphicum varied among all the hosts. Coiling of intracellular hyphae occurred in corn, alfalfa, and red clover roots. Appreciable numbers of intraradical vesicles were found only in red clover and bean roots, while arbuscules formed in all hosts except barley. It was concluded that the pattern of root colonization by G. dimorphicum is influenced by the host genome and that the fungal morphology in the roots is variable and, thus, not diagnostic for the mycorrhizal species.  相似文献   

2.
The level of vesicular-arbuscular mycorrhizal (VAM) infection in the roots of Leucaena grown in a sand-soil mixture in the greenhouse increased rapidly with time and reached a peak value of 84% at 30 days from planting. The pattern of immobile nutrient uptake and accumulation closely paralleled that of the development of infection, particularly during the first 10–30 days after planting. Significant changes in dry matter yield were also observed only after a significant portion of the root length was colonized byGlomus aggregatum. The development of VAM infection was not accompanied by growth depression at any of the sampling periods. However, VAM roots had very high levels of Cu which was not translocated to shoots. It is hypothesized that such a diversion of Cu by the endophyte from the host could cause growth depression under conditions where the soil volume is supplied with sub-optimal levels of Cu. Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Series No. 3186.  相似文献   

3.
Palmarosa (Cymbopogon martinii var. motia) was found to be associated with a vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus aggregatum. Glasshouse experiments showed that inoculation of palmarosa with G. aggregatum caused a two-fold growth and three-fold biomass production as compared to non-mycorrhizal plants. These findings indicate the potential use of VAM-fungi for improving the production of this essential oil bearing plant.CIMAP Publication No. 879.CIMAP Publication No. 879.  相似文献   

4.
The effect of the non-systemic fungicide thiram on the vesicular-arbuscular mycorrhizal (VAM) symbiosis and on Leucaena leucocephala was evaluated in a greenhouse experiment. In the uninoculated soil treated with P at a level optimal for mycorrhizal activity, mycorrhizal colonization of roots was low, and did not change as the concentration of thiram in the soil increased with the from 0 to 1000 mg/kg. When this soil was inoculated VAM fungus Glomus aggregatum, with VAM colonization was enhanced significantly, but decreased increase in thiram concentration until it coincided with the level observed in the uninoculated soil. Similarly, symbiotic effectiveness was reduced, its expression delayed or completely eliminated with increase in the concentration of thiram. Amending soil to a P level sufficient for non-mycorrhizal host growth fully compensated for thiram-induced loss of VAM activity if the thiram levels did not exceed 125 mg/kg. In soil treated with 50 mg thiram/kg, the toxicity of the fungicide dissipated within 66 days of application. At higher concentrations, the toxicity of the chemical on the mycorrhizal symbiosis appeared to be enhanced.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3716  相似文献   

5.
The effect of the fungicide, chlorothalonil, on vesicular-arbuscular mycorrhizal (VAM) symbiosis was studied in a greenhouse using Leucaena leucocephala as test plant. Chlorothalonil was applied to soil at 0, 50, 100 and 200 μg g−1. The initial soil solution P levels were 0.003 μg mL−1 (sub-optimal) and 0.026 μg mL−1 (optimal). After 4 weeks, the sub-optimal P level was raised to 0.6 μg mL−1 (high). The soil was either uninoculated or inoculated with the VAM fungus, Glomus aggregatum. The fungicide reduced mycorrhizal colonization of roots, development of mycorrhizal effectiveness, shoot P concentration and uptake and dry matter yields at all concentrations tested, although the highest inhibitory effect was noted as the concentration of the fungicide was increased from 50 to 100 μg g−1. Phosphorus applied after four weeks tended to partially offset the deleterious effects of chlorothalonil in plants grown in the inoculated and uninoculated soil which suggests that the fungicide was interfering with plant P uptake. The results suggest that the use of chlorothalonil should be restricted to levels below 50 μg g−1 if the benefits of mycorrhizal symbiosis are to be expected. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464.  相似文献   

6.
M. Habte  T. Aziz  J. E. Yuen 《Plant and Soil》1992,140(2):263-268
The residual effect of the fungicide chlorothalonil on the vesicular-arbuscular mycorrhizal (VAM) symbiosis was evaluated in a greenhouse experiment. The soil used was an oxisol (Tropeptic Eutrustox) treated with P to obtain target levels near-optimal for VAM activity or sufficient for nonmycorrhizal host growth. In the uninoculated soil treated with the former P level, the fungicide reduced VAM colonization of roots and completely suppressed symbiotic effectiveness measured in terms of pinnule P content. When this soil was inoculated with Glomus aggregatum, symbiotic effectiveness was significantly reduced but not eliminated by 50 mg of the fungicide kg−1. At higher chlorothalonil levels, VAM effectiveness but not VAM colonization was completely suppressed in the inoculated soil. The pattern with which chlorothalonil influenced tissue P content and dry matter yield at the time of harvest closely paralleled its effect on VAM effectiveness. In the soil treated with P level sufficient for nonmycorrhizal host growth, the adverse effect of the fungicide on the above variables was appreciably milder than when the host relied on VAM fungi for its P supply. The toxic effect of the fungicide, therefore, was partly offset by P fertilization, suggesting that VAM fungi were more sensitive to chlorothalonil than the host. Our results demonstrate that although the toxic effect of chlorothalonil declined as a function of time, a significant level of toxicity persisted 12.5 weeks after the chemical was applied to soil. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3625. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3625.  相似文献   

7.
Summary Brassica nigra and selected species of Leucaena and Sesbania were used as indicator hosts in a greenhouse experiment designed to establish distinct categories of mycorrhizal dependence. The plants were grown in an oxisol with different concentrations of established soil solution P in the presence or absence of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus aggregatum. The extent to which the plant species depended on the fungus for dry matter production diminished with increased concentrations of soil solution P, but the magnitude of this decrease varied from species to species. Five distinct mycorrhizal categories are proposed based on the differences observed, ranging from non-dependent to very highly dependent. The critical soil solution P concentrations that were useful for separating host species into distinct VAM-dependency groups were 0.02 and 0.2 mg/l. Species differing in their mycorrhizal dependency differed with respect to the soil solution P concentration required for the expression of maximum VAM effectiveness, the degree to which increasing concentrations of P depressed VAM infection and the pattern of immobile nutrient accumulation.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3547  相似文献   

8.
Cassava plants were started in the greenhouse either from small cuttings (2.0 mg P/cutting) or large cuttings (20.2 mg P/cutting) in a subsurface Oxisol not inoculated or inoculated with Glomus aggregatum at target soil solution P concentrations of 0.003–0.2 mg l-1. Vesicular-arbuscular mycorrhizal (VAM) fungal colonization levels in excess of 60% were attained on cassava roots irrespective of the size of cutting material used or target soil solution P status. However, plants started from large cuttings grew faster and better than those started from smaller ones. Cassava was found to be very highly dependent on VAM fungi if grown from small cutting but only marginally dependent if grown from large cuttings. The lower dependence of cassava on VAM fungi when started from larger cuttings appears to be related to the high P reserve in these cuttings and hence the low requirement of the plants for soil P until the P reserve in the cuttings is significantly depleted.A contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3896  相似文献   

9.
The effects of Pratylenchus vulnus and the endomycorrhizal fungus Glomus mosseae on growth of Myrobalan 605, Marianna 2624 and San Julian 655-2 plum rootstocks were measured under shadehouse conditions in the field for two growing seasons (1990–91). Shoot dry weights were higher in the majority of the vesicular-arbuscular mycorrhizal (VAM) alone inoculated plants after both growing seasons. Root weights of mycorrhizal Myrobalan and Marianna were higher than root weights of the same rootstocks lacking mycorrhizae, inoculated with P. vulnus, and VAM in combination with the nematode. Mycorrhizal Marianna inoculated with the nematode showed a considerably higher final nematode population in relation to non-inoculated VAM treatments. No correlation was found in the number of nematodes per gram of root between mycorrhizal and non-mycorrhizal treatments. P. vulnus adversely affected the mycorrhizal colonization in Marianna, but not in Myrobalan and San Julian. Marianna appears to be more mycorrhizal dependent than the two other rootstocks.  相似文献   

10.
The symbiosis between vesicular-arbuscular mycorrhizal (VAM) fungi and host plants develops after successful interactions between both partners. These interactions probably involve signal molecules produced by the host plant, by the fungi, or by both. So far the biotrophic status of VAM fungi has hampered the understanding of the processes regulating their physiology. However, among different methods for co-cultivating VAM fungi, root organ cultures (ROC) appear to be a useful technique for studying VAM development. This system has been useful in defining the nutritional requirements of VAM fungi in the precolonization stage and in obtaining axenic fungal material in various developmental stages. The work discussed here focuses on the application of Polymerase Chain Reaction (PCR) technology and the potential of promoting hyphal growth in the absence of the plant. These techniques are being used to study VAM fungi in two main areas. The first concerns the determination of the DNA sequences coding for the SSU ribosomal RNA of two VAM fungi. This approach has allowed the design of specific primers for the rapid identification and quantification of VAM fungi. The second area of research concerns the potential use of PCR technology to study selective expression of specific genes during fungal spore development in defined in vitro conditions. The achievement of this future prospect depends on the ability to prepare PCR-based cDNA libraries from small amounts of fungal material after stimulation of hyphal growth with CO2 and plant flavonols.  相似文献   

11.
Response ofLeucaena leucocephala (Lam) de Wit to rock phosphate application and inoculation with the vesicular-arbuscular mycorrhizal (VAM) fungusGlomus aggregatum (Schenck and Smith emend Koske) was evaluated in a pot experiment. VAM colonization increased as rock phosphate application increased. Using phosphorus concentration in pinnules as an indicator of VAM activity, significant VAM activity occurred at 25 days after planting at the lower levels of rock phosphate application (0, 0.34 and 0.68 g P kg–1). The time required for significant VAM activity was shortened by 5 days at the higher P levels (1.36, 2.72 and 5.44 g P kg–1). The highest VAM activity was associated with the highest rate of rock phosphate application.Inoculation withG. aggregatum significantly increased the uptake of Cu, P and Zn and dry-matter yield at all levels of rock phosphate applied. Copper concentrations in roots of mycorrhizal Leucaena were significantly higher than that of shoots. The results indicated that Leucaena in symbiotic association with VAM fungi effectively utilized P from rock phosphate. However, high rates of rock phosphate are required to attain growth comparable to that obtained with the application of water-soluble phosphate.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources, Journal Series No. 3243.  相似文献   

12.
Pre-transplant inoculation of lettuce (Lactuca sativa L.) seedlings with the vesicular-arbuscular mycorrhizal fungusGlomus aggregatum (Smith and Schenck emend. Koske) increased P uptake and dry matter yields after transplanting into soil when the concentration of P in the soil solution was 0.02 mg L–1 but had little affect in soil with 0.30 mg L–1 solution P. Tissue P concentrations and dry matter yields after transplanting were increased by supplying adequate P prior to transplanting. Adequate levels of pre-transplant P appeared to be more important than maximum mycorrhizal infection of transplants for promoting post-transplant growth of the fast maturing lettuce crop.Journal Series No. 0000 of the Hawaii Institute of Tropical Agriculture and Human Resources.  相似文献   

13.
The inoculation of Pistacia terebinthus with vesicular-arbuscular mycorrhizal (VAM) fungi and the spread of the infection were studied using a mixed cropping system, under glasshouse conditions, with Salvia officinalis, Lavandula officinalis and Thymus vulgaris colonized by Glomus mosseae as an inoculation method. This method was compared with soil inoculum placed under the seed or distributed evenly in the soil. Indirect inoculation with all the aromatic plants tested significantly increased VAM root colonization of P. terebinthus compared with the use of soil inoculum, although the effect on plant growth was different for each one of the aromatic species used as inoculum source. Inoculation with L. officinalis and T. vulgaris were the best treatments resulting in high VAM colonization and growth enhancement of P. terebinthus.  相似文献   

14.
A low-cost, low-maintenance system for soilless production of vesicular-arbuscular mycorrhizal (VAM) fungus spores and inoculum was developed and adapted for production of acidophilic and basophilic isolates. Corn (Zea mays) plants were grown with Glomus etunicatum, G. mosseae or Gigaspora margarita in sand automatically irrigated with modified Hoagland's solution. Sand particle size, irrigation frequency, P concentration, and buffer constituents were adjusted to maximize spore production. Modified half-strength Hoagland's solution buffered with 4-morpholine ethane-sulfonic acid (MES) automatically applied 5 times/day resulted in production of 235 G. etunicatum spores/g dry wt. of medium (341000 spores/pot) and 44 G. margarita spores/g dry wt. of medium (64800 spores/pot). For six basophilic isolates of G. mosseae, CaCO3 was incorporated into the sand and pots were supplied with the same nutrient solution as for acidophilic isolates. The increased pH from 6.1±0.2 to 7.2±0.2 resulted in spore production ranging from 70 to 145 spores/g dry wt. (102000–210000 spores/pot). Spore production by all isolates grown in the soilless sand system at Beltsville has exceeded that of traditional soil mixtures by 32–362% in 8–12 weeks.  相似文献   

15.
Lower amounts of root eduxates (13 mg/g dry root) emerged from leucaena plants inoculated with the mycorrhizal fungus, Glomus fasciculatum, than uninoculated plants (21 mg/g dry root). Mycorrhizal plants exuded less K+, Pi and sugars (mainly glucose) but more protein, nitrogen, phenolics and gibberellins than uninoculated plants. Glycine, alanine, cysteine, arginine, tryptophan and valine occurred only in the root exudates of the former. Uninoculated plants exuded more of a root-elongation inhibitory substance than the uninoculated ones.R.J. Mada and D.J. Bagyaraj are with the Department of Agricultural Microbiology, University of Agricultural Sciences, GKVK Campus, Bangalore 560065, India.  相似文献   

16.
Summary The vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus versiforme increased significantly the growth ofAsparagus officinalis under controlled conditions using Turface as the growth medium. The growth responses, including increases in root fresh weight, numbers of shoots, shoot dry weight, and shoot height follow a pattern similar to other mycorrhizal systems. Indigenous VAM fungi appeared to have negative effects on average shoot fresh and dry weight, number of shoots per pot and average shoot height on one year oldA. officinalis seedlings obtained from the field and grown under controlled conditions. These results may be due either to the high levels of soluble phosphate present in the soil or the ineffectiveness of the particular indigenous fungi as mycorrhizal fungi in asparagus. Indigenous mycorrhizal fungi overwinter in asparagus root crown as vesicles and as external and internal hyphae. Soil obtained from the same fields as the one year old crowns was a good source of mycorrhizal inoculum for sterile seedlings.  相似文献   

17.
Biotic factors in the rhizosphere and their effect on the growth ofPlantago major L. ssp.pleiosperma Pilger (Great plantain) were studied. In a pot experiment the effect on shoot growth of the addition of 2.5% rhizosphere soil at four levels of phosphate was highly dependent on the availability of phosphate: a promoting effect at low phosphate levels was observed while a reducing effect occurred at higher phosphate levels. As the roots were infected with vesicular-arbuscular mycorrhizal (VAM) fungi in the treatment with rhizosphere soil, two other experiments were set up to separate effects of the indigenous VAM fungi from effects of the total rhizosphere population. The uptake of phosphate and shoot growth was not decreased at higher phosphate availability when VAM inoculum was added alone or in combination with rhizosphere soil. The growth reducing effect of the rhizosphere soil could therefore not be ascribed only to mycorrhizal infection. The results suggest that biotic factors in the rhizosphere soil affect the phosphate uptake ofPlantago major ssp.pleiosperma. This may, under conditions of phosphate limitation, lead to an increase of phosphate stress and, subsequently, a growth reduction. Futhermore, it is concluded that VAM fungi, as part of the rhizosphere population, may compensate this phosphate stress by enhancing the phosphate uptake.Grassland Species Research Group Publication No. 148.  相似文献   

18.
M. Soedarjo  M. Habte 《Plant and Soil》1993,149(2):197-203
A greenhouse investigation was undertaken to determine the influence of fresh organic matter on the formation and functioning of vesicular-arbuscular mycorrhizal symbiosis in Leucaena leucocephala grown in an acid aluminum-rich ultisol. In soil not amended with fresh organic matter or lime, plants failed to grow. Mycorrhizal infection level, mycorrhizal effectiveness measured in terms of pinnule P content of L. leucocephala leaves and dry matter yield of the legume increased with increase in fresh organic matter. Although VAM colonization level and dry matter yield of L. leucocephala were significantly higher if the test soil was limed (7.2 cmole OH) than if amended with fresh organic matter, the latter was as effective as lime in off-setting the detrimental effect of aluminum on mycorrhizal effectiveness. The lower mycorrhizal colonization level and the lower dry matter yield noted in the soil treated with fresh organic matter appears to be related to the inadequacy of Ca in the soil amended with fresh organic matter. These observations are supported by the low calcium status of soil and plant tissues in the absence of lime. It is concluded that while fresh organic matter, in appropriate amounts, could protect sensitive plants and VAM symbiosis against Al toxicity in acid soils, maximum mycorrhizal inoculation effects are not likely to be attained unless the soils are also amended with Ca.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No 3740.  相似文献   

19.
The interaction between Pratylenchus vulnus and the endomycorrhizal fungus Glomus mosseae on the growth of EMLA 26 apple rootstock was studied under shadehouse conditions in the field during the first 6 months of growth. Fresh top weights, fresh root weights, and shoot lengths of mycorrhizal plants with and without P. vulnus were significantly higher than those of nonmycorrhizal plants. Addition of P to non-mycorrhizal controls had little overall effect. Mycorrhizal treatments with the nematode showed a significantly lower amount of nematodes per gram of root than nonmycorrhizal treatments with P. vulnus. Root colonization by G. mosseae was not affected by the presence of the nematode. No nutrient deficiencies were detected in foliar analyses, although low levels of K, A1, and Fe were detected in nematode treatments. The highest levels of S, Mg, Mn and Zn were detected in P. vulnus inoculated plants. Mycorrhizal plants had the highest levels of N, Na, P, K, and Fe. The importance of early mycorrhizal infection of EMLA 26 apple root-stock in the presence of the nematode is discussed.  相似文献   

20.
M. Habte  R. L. Fox 《Plant and Soil》1993,151(2):219-226
Five tropical soils were either not inoculated or inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus aggregatum. The degree to which VAM effectiveness was expressed in the soils was evaluated prior and after solution P status was adjusted for optimal VAM activity. VAM effectiveness determined by monitoring P concentrations of pinnules of Leucaena leucocephala leaves as a function of time and as dry matter yield determined at the time of harvest, indicated that in three of the soils VAM effectiveness was either very restricted or altogether unexpressed irrespective of vesicular-arbuscular mycorrhizal fungal (VAMF) inoculation if soil solution P was not optimized for VAM effectiveness. After P optimization, effectiveness was significantly increased by VAMF inoculation although in four of the soils, densities of indigenous VAMF propagules greatly exceeded that attained by the inoculum after it was mixed with soil. Mycorrhizal fungal inoculation effects varied from soil to soil, depending on the extent to which the effectiveness of indigenous and introduced endophytes was enhanced by P optimization and the similarity of inherent soil solution P concentrations to the range known to be optimum for VAM effectiveness. Of the indicator variables monitored, VAMF colonization was least sensitive to treatment effects followed by shoot P concentration measured at the time of harvest.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号