首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deep-etch visualization of proteins involved in clathrin assembly   总被引:17,自引:9,他引:8       下载免费PDF全文
Assembly proteins were extracted from bovine brain clathrin-coated vesicles with 0.5 M Tris and purified by clathrin-Sepharose affinity chromatography, then adsorbed to mica and examined by freeze-etch electron microscopy. The fraction possessing maximal ability to promote clathrin polymerization, termed AP-2, was found to be a tripartite structure composed of a relatively large central mass flanked by two smaller mirror-symmetric appendages. Elastase treatment quantitatively removed the appendages and clipped 35 kD from the molecule's major approximately 105-kD polypeptides, indicating that the appendages are made from portions of these polypeptides. The remaining central masses no longer promote clathrin polymerization, suggesting that the appendages are somehow involved in the clathrin assembly reaction. The central masses are themselves relatively compact and brick-shaped, and are sufficiently large to contain two copies of the molecule's other major polypeptides (16- and 50-kD), as well as two copies of the approximately 70-kD protease-resistant portions of the major approximately 105-kD polypeptides. Thus the native molecule seems to be a dimeric, bilaterally symmetrical entity. Direct visualization of AP-2 binding to clathrin was accomplished by preparing mixtures of the two molecules in buffers that marginally inhibit AP-2 aggregation and cage assembly. This revealed numerous examples of AP-2 molecules binding to the so-called terminal domains of clathrin triskelions, consistent with earlier electron microscopic evidence that in fully assembled cages, the AP's attach centrally to inwardly-directed terminal domains of the clathrin molecule. This would place AP-2s between the clathrin coat and the enclosed membrane in whole coated vesicles. AP-2s linked to the membrane were also visualized by enzymatically removing the clathrin from brain coated vesicles, using purified 70 kD, uncoating ATPase plus ATP. This revealed several brick-shaped molecules attached to the vesicle membrane by short stalks. The exact stoichiometry of APs to clathrin in such vesicles, before and after uncoating, remains to be determined.  相似文献   

2.
Deep-etch visualization of 27S clathrin: a tetrahedral tetramer   总被引:3,自引:3,他引:0       下载免费PDF全文
It has recently been reported that 8S clathrin trimers or "triskelions" form larger 27S oligomers upon dialysis into low ionic strength buffers (Prasad, K., R. E. Lippoldt, H. Edelhoch, and M. S. Lewis, 1986, Biochemistry, 25:5214-5219). Here, deep-etch electron microscopy of the 27S species reveals that they are closed tetrahedra composed of four clathrin triskelions. This was determined by two approaches. First, standard quick-freezing and freeze-etching of unfixed 27S species suspended in 2 mM 2-(N-morpholino)ethane sulfonic acid (MES) buffer, pH 5.9, yielded unambiguous images of tetrahedra that measured 33 nm on each edge. Second, the technique of freeze-drying molecules on mica (Heuser, J. E., 1983, J. Mol. Biol., 169:155-195) was modified to overcome the low affinity of mica in 2 mM MES, by pretreating the mica with polylysine. Thereafter, 27S species adsorbed avidly to it and collapsed into characteristic configurations containing four globular domains, each linked to the others by three approximately 33-nm struts. The globular domains look like vertices of deep-etched clathrin triskelions and the links, numbering 12 in all, look like four sets of triskelion legs. New light scattering and equilibrium centrifugation data confirm that 27S polymer is four times as massive as one clathrin triskelion. We conclude that in conditions that do not favor the formation of standard clathrin cages, low affinity interactions lead to closed, symmetrical assemblies of four triskelions, each of which assumes a unique puckered, straight-legged configuration to create the edges of a tetrahedron. Tetrahedra are similar in construction to the cubic octomers of clathrin recently found in ammonium sulfate solutions (Sorger, P. K., R. A. Crowther, J. T. Finch, and B. M. F. Pearse, 1986, J. Cell Biol., 103:1213-1219) but are still smaller, involving only half as many clathrin triskelions.  相似文献   

3.
Clathrin was isolated in highly purified form from bovine brain preparations rich in coated vesicles and by some improvements of our previous procedures. At pH 7.5, clathrin's solution was viscous, but clear. At pH 6.5, clathrin's solution was less viscous, but turbid. By electron microscopy, clathrin's turbidity at pH 6.5 correlated with the presence of numerous basket-like lattices or cages; the higher viscosity observed at pH 7.5 correlated with a mixture of various polymeric forms of clathrin having linearly assembled filaments or filamentous bundles of cross-linked clathrin molecules. In vivo, clathrin's capacity for assembling or disassembling itself into baskets or cage-like structures is compatible with a mechanism that retrieves areas of the plasma membrane containing protein molecules, smaller stimulatory or inhibitory compounds bound on the external cell membrane surface.  相似文献   

4.
《The Journal of cell biology》1983,97(5):1452-1458
We obtained high-resolution topographical information about the distribution of clathrin and cytoskeletal filaments on cytoplasmic membrane surfaces of macrophages spreading onto glass coverslips by both critical-point drying of broken-open cells and preparation of rotary platinum replicas. Irregular patches of the adherent ventral surface of the plasma membrane were exposed in these cells, and large areas of these exposed membranes were covered with clathrin-coated patches, pits, and vesicles. Various amounts of cytoskeleton were attached to the plasma membranes of these spreading cells, either as distinct starlike foci, or as individual filaments and bundles radiating out from the cytoskeletal meshwork. In newly adherent cells a well developed Golgi-GERL complex, characterized by smooth, dish-like cisternae associated with rough endoplasmic reticulum, was observed. There were many coated vesicles budding off from the Golgi cisternae, and these were predominantly of the large type (150 nm) usually associated with the plasma membrane. In critical-point-dried samples, both cytoskeleton and membranes were preserved in detail comparable to that of quick-frozen samples, after appropriate fixation. Rotary replication of critical-point-dried cells provides a rapid, easily controlled, and generally easy to perform method for obtaining samples of exposed membrane large enough to permit quantification of membrane- associated clathrin and cytoskeleton under various experimental conditions.  相似文献   

5.
Protein machines and lipid bilayers both play central roles in cell membrane fusion, a process crucial to life. Recent results provide clues to how both components function in fusion. Recent observations suggest a common mechanism by which very different fusion machines (from lipid-enveloped viruses and synaptic vesicles) may function to produce compartment-joining pores. This mechanism presumes that fusion proteins act as machines that use stored conformational energy to assemble closely juxtaposed lipid bilayers, bend these to form fusion-competent structures, stabilize unfavorable lipid structures and destabilize a committed intermediate to drive fusion pore formation.  相似文献   

6.
7.
8.
Internalization of membrane, fluid and receptor-bound ligands into cells occurs by at least two endocytic mechanisms. One is dependent on clathrin and responsible for concentrative uptake of growth factors and other ligands, whereas the other operates without clathrin. Clathrin-independent endocytosis, which might involve more than one mechanism, can contribute significantly to the total uptake of membrane and fluid in a cell. The properties and possible roles of clathrin-independent endocytosis are discussed in this article.  相似文献   

9.
While clathrin heavy chains from different species are highly conserved in amino acid sequence, clathrin light chains are much more divergent. Thus clathrin light chain may have different functions in different organisms. To investigate clathrin light chain function, we cloned the clathrin light chain, clcA, from Dictyostelium and examined clathrin function in clcA– mutants. Phenotypic deficiencies in development, cytokinesis, and osmoregulation showed that light chain was critical for clathrin function in Dictyostelium . In contrast with budding yeast, we found the light chain did not influence steady-state levels of clathrin, triskelion formation, or contribute to clathrin over-assembly on intracellular membranes. Imaging GFP-CHC in clcA– mutants showed that the heavy chain formed dynamic punctate structures that were remarkably similar to those found in wild-type cells. However, clathrin light chain knockouts showed a decreased association of clathrin with intracellular membranes. Unlike wild-type cells, half of the clathrin in clcA– mutants was cytosolic, suggesting that the absence of light chain compromised the assembly of triskelions onto intracellular membranes. Taken together, these results suggest a role for the Dictyostelium clathrin light chain in regulating the self-assembly of triskelions onto intracellular membranes, and demonstrate a crucial contribution of the light chain to clathrin function in vivo .  相似文献   

10.
Life of a clathrin coat: insights from clathrin and AP structures   总被引:1,自引:0,他引:1  
Membrane sorting between secretory and endocytic organelles is predominantly controlled by small carrier vesicles or tubules that have specific protein coats on their cytoplasmic surfaces. Clathrin-clathrin-adaptor coats function in many steps of intracellular transport and are the most extensively studied of all transport-vesicle coats. In recent years, the determination of structures of clathrin assemblies by electron microscopy, of domains of clathrin and of its adaptors has improved our understanding of the molecular mechanisms of clathrin-coated-vesicle assembly and disassembly.  相似文献   

11.
K Prasad  R E Lippoldt 《Biochemistry》1989,28(8):3534-3540
Clathrin (8S), when purified, polymerizes under low-pH conditions (0.1 M MES, pH 6.0-6.2) into a heterogeneous population of baskets with sedimentation coefficients ranging from 150 to 400 S. Several groups of proteins of molecular masses 180, 110, 100, 50, and 47 kDa (based on sodium dodecyl sulfate gel electrophoresis) present in the isolated coated vesicles are involved in polymerizing clathrin under physiological conditions to a homogeneous population of baskets [Zaremba, S., & Keen, J. H. (1983) J. Cell Biol. 97, 1339; Ahle, S., & Ungewickell, E. (1986) EMBO J. 5, 3143]. We now report that in 0.1 M MES, pH 6.0, where pure clathrin polymerizes by itself, the above proteins (together known as associated proteins or APs) induce polymerization of clathrin into three distinct sizes of baskets with sedimentation coefficients of 150, 220, and 300 S. Low ratios of clathrin to APs give rise to smaller sizes, whereas higher ratios give rise to predominantly the larger sizes. The smaller size baskets (150S) are intermediates in the polymerization of clathrin to larger size baskets (300S) as inferred from the dissociation of larger size baskets into smaller size baskets and the formation of larger size baskets from smaller size baskets upon the addition of pure clathrin.  相似文献   

12.
13.
14.
The endocytic accessory clathrin assembly lymphoid myeloid leukemia protein (CALM) is the ubiquitously expressed homolog of the neuron-specific protein AP180 that has been implicated in the retrieval of synaptic vesicle. Here, we show that CALM associates with the alpha-appendage domain of the AP2 adaptor via the three peptide motifs 420DPF, 375DIF and 489FESVF and to a lesser extent with the amino-terminal domain of the clathrin heavy chain. Reducing clathrin levels by RNA interference did not significantly affect CALM localization, but depletion of AP2 weakens its association with the plasma membrane. In cells, where CALM levels were reduced by RNA interference, AP2 and clathrin remained organized in somewhat enlarged bright fluorescent puncta. Electron microscopy showed that the depletion of CALM drastically affected the clathrin lattice structure. Round-coated buds, which are the predominant features in control cells, were replaced by irregularly shaped buds and long clathrin-coated tubules. Moreover, we noted an increase in the number of very small cages that formed on flat lattices. Furthermore, we noticed a redistribution of endosomal markers and AP1 in cells that were CALM depleted. Taken together, our findings indicate a critical role for CALM in the regulation and orderly progression of coated bud formation at the plasma membrane.  相似文献   

15.
We report here detection of novel intracellular clathrin-coated structures revealed by continuous high-speed imaging of cells expressing green fluorescent protein fusion proteins. These structures, which we operationally term 'gyrating clathrin' (G-clathrin), are characterized by localized but extremely rapid movement, leading to the hypothesis that they are coated buds on waving membrane tubules. G-clathrin structures have structurally and functionally distinct features. They lack detectable adaptor proteins AP-1 and AP-2 but contain GGA1 [Golgi-localized, gamma-ear-containing, Arf (ADP-ribosylation factor)-binding protein] as well as the cation-dependent mannose-6-phosphate receptor. While they accumulate internalized transferrin (Tf), they do not contain detectable levels of cargos targeted for the late endosome/lysosome pathway such as EGF and dextran. Pulse-chase studies indicate that Tf appears in G-clathrin structures in the cell periphery after sorting endosomes (SEs), but before filling of the perinuclear endocytic recycling compartment. Furthermore, the inhibitors LY294002 and wortmannin, which inhibit direct recycling of Tf from SEs to the plasma membrane, also block its appearance in G-clathrin. These observations suggest that peripheral G-clathrin contributes to rapid recycling, a kinetically defined compartment that has largely eluded structural identification. More generally, the rapid continuous live cell imaging reported here reveals new aspects of membrane trafficking.  相似文献   

16.
Endocytosis is involved in an enormous variety of cellular processes. To date, most studies on endocytosis in mammalian cells have focused on pathways that start with uptake through clathrin-coated pits. Recently, new techniques and reagents have allowed a wider range of endocytic pathways to begin to be characterized. Various non-clathrin endocytic mechanisms have been identified, including uptake through caveolae, macropinosomes and via a separate constitutive pathway. Many markers for clathrin-independent endocytosis are found in detergent-resistant membrane fractions, or lipid rafts. We will discuss these emerging new findings and their implications for the nature of lipid rafts themselves, as well as for the potential roles of non-clathrin endocytic pathways in remodeling of the plasma membrane and in regulating the membrane composition of specific intracellular organelles.  相似文献   

17.
Assembled clathrin in erythrocytes   总被引:2,自引:0,他引:2  
Clathrin cages were isolated from rat erythrocytes. These structures exist in the intact cell as demonstrated by immunofluorescence and were not formed during the isolation procedure. The cages were largely devoid of membrane but contained the assembly protein complex and both the 50-kDa kinase (pp50) and casein kinase II activities found previously in clathrin-coated vesicles.  相似文献   

18.
Energetics of clathrin basket assembly   总被引:2,自引:0,他引:2  
A minimal thermodynamic model is used to study the in vitro equilibrium assembly of reconstituted clathrin baskets. The model contains parameters accounting for i) the combined bending and flexing rigidities of triskelion legs and hubs, ii) the intrinsic curvature of an isolated triskelion, and iii) the free energy changes associated with interactions between legs of neighboring triskelions. Analytical expressions for basket size distributions are derived, and published size distribution data (Zaremba S, Keen JH. J Cell Biol 1983;97: 1339–1347) are then used to provide estimates for net total basket assembly energies. Results suggest that energies involved in adding triskelions to partially formed clathrin lattices are small (of the order of kBT), in accord with the notion that lattice remodeling during basket formation occurs as a result of thermodynamic fluctuations. In addition, analysis of data showing the effects of assembly proteins (APs) on basket size indicates that the binding of APs increases the intrinsic curvature of an elemental triskelial subunit, the stabilizing energy of leg interactions, and the effective leg/hub rigidity. Values of effective triskelial rigidity determined in this investigation are similar to those estimated by previous analysis of shape fluctuations of isolated triskelia.  相似文献   

19.
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans‐Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc‐YR) , which fused the N‐terminus of yeast CHC (1–1312) to the rat CHC residues 1318–1675, including the CHC trimerization region. The novel CHC‐YR allele encoded a stable protein that fractionated as a trimer. CHC‐YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC‐YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc‐YR‐GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1‐GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC‐YR, indicating that Chc‐YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc‐YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non‐trimerization roles for the clathrin LC.  相似文献   

20.
Coated vesicles, essential organelles of intracellular membrane traffic, have been extensively studied in animal and higher plant cells. In the algae, cytological studies only have been performed which demonstrate the presence of such coated vesicles with their surrounding clathrin lattice. The present work has been carried out on coated vesicles isolated for the first time from the brown algae Laminaria digitata. For comparison of the antigenic characteristics of clathrin prepared from the Bovine brain or adrenocortical cells and the clathrin prepared from algae, polyclonal antibodies have been raised to a purified Bovine brain clathrin in Goat and to Bovine adrenocortical clathrin in Rabbit. The positive immunological responses of the coated vesicles and the clathrin from Algae to these antibodies, evidence an homology between antigenic determinants of clathrin from animal and vegetal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号