首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The maintenance of growth of hyphae of Saprolegnia ferax was dependent on the presence of external Ca2+ and the growth rate increased with increased external Ca2+ up to 5 × 10−2 m Ca2+. When Ca2+ was greater than 5 × 10−2 m, growth rates decreased. Internal membrane-associated Ca2+ was localized with chlortetracycline. Internal Ca2+ became depleted in hyphae grown in the absence of Ca2+ and was increased in hyphae grown in high concentrations of Ca2+, showing that internal Ca2+ can be modulated by external Ca2+. However, the range of the internal change was not as great as the range of external concentration used, indicating that the hyphae are capable of regulating Ca2+ in the presence of a large concentration gradient. In the absence of external Ca2+, growth can occur for a limited time through use of internal Ca2+. The actin cytoskeleton was altered in hyphae grown in both high and low Ca2+. Hyphae grown in 10−3 m Ca2+ had more actin in their apical network and peripheral plaques of actin were further from the apex than in more slowly growing hyphae in 10−1 m and 0 Ca2+. The tips of hyphae growing in low Ca2+ also had a tendency to swell, giving these hyphae irregular shapes. Ca2+ is known to affect cell wall rigidity and the consistency of actin gels, two factors that can be expected to affect hyphal growth. External Ca2+ does play a role in hyphal growth possibly directly by acting on the cell wall and indirectly by altering internal Ca2+, thus affecting the actin cytoskeleton and possibly other growth processes.  相似文献   

2.
Rapid stomatal closure is driven by the activation of S‐type anion channels in the plasma membrane of guard cells. This response has been linked to Ca2+ signalling, but the impact of transient Ca2+ signals on S‐type anion channel activity remains unknown. In this study, transient elevation of the cytosolic Ca2+ level was provoked by voltage steps in guard cells of intact Nicotiana tabacum plants. Changes in the activity of S‐type anion channels were monitored using intracellular triple‐barrelled micro‐electrodes. In cells kept at a holding potential of ?100 mV, voltage steps to ?180 mV triggered elevation of the cytosolic free Ca2+ concentration. The increase in the cytosolic Ca2+ level was accompanied by activation of S‐type anion channels. Guard cell anion channels were activated by Ca2+ with a half maximum concentration of 515 nm (SE = 235) and a mean saturation value of ?349 pA (SE = 107) at ?100 mV. Ca2+ signals could also be evoked by prolonged (100 sec) depolarization of the plasma membrane to 0 mV. Upon returning to ?100 mV, a transient increase in the cytosolic Ca2+ level was observed, activating S‐type channels without measurable delay. These data show that cytosolic Ca2+ elevation can activate S‐type anion channels in intact guard cells through a fast signalling pathway. Furthermore, prolonged depolarization to 0 mV alters the activity of Ca2+ transport proteins, resulting in an overshoot of the cytosolic Ca2+ level after returning the membrane potential to ?100 mV.  相似文献   

3.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

4.
Summary Recently Plieth et al. [Protoplasma (1997) 198: 107–124; 199: 223] gave a quantitative picture of the Ca2+ and H+ buffers in green algae which we would like to comment. In that paper a mechanistic model was derived which describes the relationship between cytosolic Ca2+ and H+ assuming that Ca2+ and H+ interact with the same binding site of a Ca2+-H+-exchange buffer. But the increase of the cytosolic free Ca2+ concentration observed upon acidification can alternatively be described by a co-operative (n=2) protonation of a Ca2+/H+-binding buffer pointing to an allosteric mechanism of Ca2+ liberation. Furthermore we present evidences that the cytosolic buffer capacities for H+ (90 mM/pH) and Ca2+ (20 mM/pCa) given for Eremosphaera viridis were overestimated by a factor of three and three orders of magnitude, respectively.Abbreviations [Ca2+]c free cytosolic - Ca2+ concentration  相似文献   

5.
We have studied arginine vasopressin (AVP)-, thapsigargin- and inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release in renal epithelial LLC-PK1 cells. AVP-induced changes in the intracellular free calcium concentration ([Ca2+]i) were studied in indo-1 loaded single cells by confocal laser cytometry. AVP-mediated Ca2+ mobilization was also observed in the absence of extracellular Ca2+, but was completely abolished after depletion of the intracellular Ca2+ stores by 2 μM thapsigargin. Using 45Ca2+ fluxes in saponin-permeabilized cell monolayers, we have analysed how InsP3 affected the Ca2+ content of nonmitochondrial Ca2+ pools in different loading and release conditions. Less than 10% of the Ca2+ was taken up in a thapsigargin-insensitive pool when loading was performed in a medium containing 0.1 μM Ca2+. The thapsigargin-insensitive compartment amounted to 35% in the presence of 110 μM Ca2+, but Ca2+ sequestered in this pool could not be released by InsP3. The thapsigargin-sensitive Ca2+ pool, in contrast, was nearly completely InsP3 sensitive. A submaximal [InsP3], however, released only a fraction of the sequestered Ca2+. This fraction was dependent on the cytosolic as well as on the luminal [Ca2+]. The cytosolic free [Ca2+] affected the InsP3-induced Ca2+ release in a biphasic way. Maximal sensitivity toward InsP3 was found at a free cytosolic [Ca2+] between 0.1 and 0.5 μM, whereas higher cytosolic [Ca2+] decreased the InsP3 sensitivity. Other divalent cations or La3+ did not provoke similar inhibitory effects on InsP3-induced Ca2+ release. The luminal free [Ca2+] was manipulated by varying the time of incubation of Ca2+ -loaded cells in an EGTA-containing medium. Reduction of the Ca2+ content to one-third of its initial value resulted in a fivefold decrease in the InsP3 sensitivity of the Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

7.
Summary A human intestinal epithelial cell line (Intestine 407) is known to retain receptors for intestinal secretagogues such as acetylcholine (ACh), histamine, serotonin (5-HT) and vasoactive intestinal peptide (VIP). The cells were also found to possess separate receptors for secretin and ATP, the stimulation of which elicited transient hyperpolarizations coupled to decreased membrane resistances. These responses were reversed in polarity at the K+ equilibrium potential. The hyperpolarizing responses to six agonists were reversibly inhibited by quinine or quinidine. By means of Ca2+-selective microelectrodes, increases in the cytosolic free Ca2+ concentration were observed in response to individual secretagogues. The time course of Ca2+ responses coincided with that of hyperpolarizing responses. The responses to ACh and 5-HT were abolished by a reduction in the extracellular Ca2+ concentration down to pCa 7 or by application of Co2+. Thus, in Intestine 407 cells, not only the intestinal secretagogues, which are believed to act via increased cytosolic Ca2+ (ACh, 5-HT and histamine), but also those which elevate cyclic AMP (VIP, secretin and ATP) induce increases in cytosolic Ca2+, thereby activating the K+ conductance. It is likely that the origin of increased cytosolic Ca2+ is mainly extracellular for ACh- and 5-HT-induced responses, whereas histamine, VIP, secretin and ATP mobilize Ca2+ from the internal compartment.  相似文献   

8.
The Na+/Ca2+ exchange system is the primary Ca2+ efflux mechanism in cardiac myocytes, and plays an important role in controlling the force of cardiac contraction. The exchanger protein contains 11 transmembrane segments plus a large hydrophilic domain between the 5th and 6th transmembrane segments; the transmembrane regions are reponsible for mediating ion translocation while the hydrophilic domain is responsible for regulation of activity. Exchange activity is regulated in vitro by interconversions between an active state and either of two inactive states. High concentrations of cytosolic Na+ or the absence of cytosolic Ca2+ promote the formation of the inactive states; phosphatidylinositol-(4,5)bisphosphate (or other negatively charged phospholipids) and cytosolic Ca2+ counteract the inactivation process. The importance of these mechanisms in regulating exchange activity under normal physiological conditions is uncertain. Exchanger function is also dependent upon cytoskeletal interactions, and the exchanger's location with respect to intracellular Ca2+-sequestering organelles. An understanding of the exchanger's function in normal cell physiology will require more detailed information on the proximity of the exchanger and other Ca2+-transporting proteins, their interactions with the cytoskeleton, and local concentrations of anionic phospholipids and transported ions.  相似文献   

9.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

10.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

11.
The concentration of intracellular calcium, [Ca2+] i , in Paramecium was imaged during cold-sensitive response by monitoring fluorescence of two calcium-sensitive dyes, Fluo-3 and Fura-Red. Cooling of a deciliated Paramecium caused a transient increase in [Ca2+] i at the anterior region of the cell. Increase in [Ca2+] i was not observed at any region in Ca2+-free solution. Under the electrophysiological recording, a transient depolarization of the cell was observed in response to cooling. On the voltage-clamped cell, cooling induced a transient inward current under conditions where K+ currents were suppressed. These membrane depolarizations and inward currents in response to cooling were lost upon removing extracellular Ca2+. The cold-induced inward current was lost upon replacing extracellular Ca2+ with equimolar concentration of Co2+, Mg2+ or Mn2+, but it was not affected significantly by replacing with equimolar concentration of Ba2+ or Sr2+. These results indicate that Paramecium cells have Ca2+ channels that are permeable to Ca2+, Ba2+ and Sr2+ in the anterior soma membrane and the channels are opened by cooling. Received: 1 April 1996/Revised: 23 July 1996  相似文献   

12.
Human platelets use a rise in cytosolic Ca2+ concentration to activate all stages of thrombus formation, however, how they are able to decode cytosolic Ca2+ signals to trigger each of these independently is unknown. Other cells create local Ca2+ signals to activate Ca2+-sensitive effectors specifically localised to these subcellular regions. However, no previous study has demonstrated that agonist-stimulated human platelets can generate a local cytosolic Ca2+ signal. Platelets possess a structure called the membrane complex (MC) where the main intracellular calcium store, the dense tubular system (DTS), is coupled tightly to an invaginated portion of the plasma membrane called the open canalicular system (OCS). Here we hypothesised that human platelets use a Ca2+ nanodomain created within the MC to control the earliest phases of platelet activation. Dimethyl-BAPTA-loaded human platelets were stimulated with thrombin in the absence of extracellular Ca2+ to isolate a cytosolic Ca2+ nanodomain created by Ca2+ release from the DTS. In the absence of any detectable rise in global cytosolic Ca2+ concentration, thrombin stimulation triggered Na+/Ca2+ exchanger (NCX)-dependent Ca2+ removal into the extracellular space, as well as Ca2+-dependent shape change in the absence of platelet aggregation. The NCX-mediated Ca2+ removal was dependent on the normal localisation of the DTS, and immunofluorescent staining of NCX3 demonstrated its localisation to the OCS, consistent with this Ca2+ nanodomain being formed within the MC. These results demonstrated that human platelets possess a functional Ca2+ nanodomain contained within the MC that can control shape change independently of platelet aggregation.  相似文献   

13.
The changes in cytosolic Ca2+ levels play important roles in the signal transduction pathways of many environmental and developmental stimuli in plants and animals. We demonstrated that the increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis thaliana leaf cells was induced by exogenous application of jasmonic acid (JA). The elevation of [Ca2+]cyt was detected within 1 min after JA treatment by the fluorescence intensity using laser scanning confocal microscopy, and the elevated level of fluorescence was maintained during measuring time. With pretreatment of nifedipine (Nif), a nonpermeable L-type channel blocker, the fluorescence of [Ca2+]cyt induced by JA was inhibited in a dose-dependent manner. In contrast, verapamil, another L-type channel blocker, had no significant effect. Furthermore, Nif repressed JA-induced gene expression of JR1 but verapamil did not. JA-induced gene expression could be mimicked by higher concentration of extracellular Ca2+. W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin (CaM), blocked the JA induction of JR1 expression while W-5 [N-(6-aminohexyl)-1-naphthalenesulfonamide], its inactive antagonist, had no apparent effect. These data provide the evidence that the influx of extracellular Ca2+ through Nif sensitive plasma membrane Ca2+ channel may be responsible for JA-induced elevation of [Ca2+]cyt and downstream gene expression, CaM may be also involved in JA signaling pathway.  相似文献   

14.
On mammalian fertilization, long-lasting Ca2+ oscillations are induced in the egg by the fusing spermatozoon. While each transient Ca2+ increase in Ca2+ concentration ([Ca2+]) in the cytosol is due to Ca2+ release from the endoplasmic reticulum (ER), Ca2+ influx from outside is required for Ca2+ oscillations to persist. In this study, we investigated how Ca2+ influx is interrelated to the cycle of Ca2+ release and uptake by the intracellular Ca2+ stores during Ca2+ oscillations in fertilized mouse eggs. In addition to monitoring cytosolic [Ca2+] with fura-2, the influx rate was evaluated using Mn2+ quenching technique, and the change in [Ca2+] in the ER lumen was visualized with a targeted fluorescent probe. We found that the influx was stimulated after each transient Ca2+ release and then diminished gradually to the basal level, and demonstrated that the ER Ca2+ stores once depleted by Ca2+ release were gradually refilled until the next Ca2+ transient to be initiated. Experiments altering extracellular [Ca2+] in the middle of Ca2+ oscillations revealed the dependence of both the refilling rate and the oscillation frequency on the rate of Ca2+ influx, indicating the crucial role of Ca2+ influx in determining the intervals of Ca2+ transients. As for the influx pathway supporting Ca2+ oscillations to persist, STIM1/Orai1-mediated store-operated Ca2+ entry (SOCE) may not significantly contribute, since neither known SOCE blockers nor the expression of protein fragments that interfere the interaction between STIM1 and Orai1 inhibited the oscillation frequency or the influx rate.  相似文献   

15.
Evidence has accrued during the past two decades that mitochondrial Ca2+ plays an important role in the regulation of numerous cell functions such as energy metabolism. This implies that mitochondrial Ca2+ transport systems might be able to relay the changes of cytosolic Ca2+ concentration ([Ca2+]c) into mitochondrial matrix for regulating biochemical activities. To substantiate this idea, measurements of intramitochondrial free Ca2+ concentration ([Ca2+]m) become essential. In this article, we review the results from recent studies attempting to measure [Ca2+]m in living cells. In addition, the significance of each study is discussed.  相似文献   

16.
Experiments were carried out on isolated neurons of the thalamic nucleus lateralis dorsalis (LD) from 12-day-old rats. According to the morphological characteristics, LD neurons were classified as relay thalamo-cortical units and interneurons. The concentration of free Ca2+ ions in the cytoplasm ([Ca2+] i ) was measured by a fluorescent calcium indicator, fura-2AM. Application of 30 mM caffeine caused a transient change in the [Ca2+] i in 8 of 15 and in 6 of 11 of the thalamo-cortical units and interneurons under study, respectively. After stimulation of a cell with application of 50 mM KCl, a caffeine-induced increase in the [Ca2+] i was observed in all tested neurons. To study the contribution of Ca2+-induced Ca2+ release (CICR) to the calcium transient evoked by depolarization of the neuronal membrane, caffeine in a subthreshold concentration was pre-applied. After 50 mM KCl had been added to the medium following pre-application of 0.5 mM caffeine, the calcium transient amplitude in thalamo-cortical neurons increased by 51 ± 7% (n = 16). In interneurons this effect was not observed (n = 11). The data obtained allow us to hypothesize that CICR contributes to the depolarization-evoked calcium transient only in the relay (thalamo-cortical) neurons. Differences in the pattern of calcium signalling, which were detected in two types of neurons of the thalamic LD, can be a factor determining distinctions in the physiological characteristics of these neurons.  相似文献   

17.
Kawasaki disease is a multi-systemic vasculitis that generally occurs in children and that can lead to coronary artery lesions. Recent studies showed that Kawasaki disease has an important genetic component. In this review, we discuss the single-nucleotide polymorphisms in the genes encoding proteins with a role in intracellular Ca2+ signaling: inositol 1,4,5-trisphosphate 3-kinase C, caspase-3, the store-operated Ca2+-entry channel ORAI1, the type-3 inositol 1,4,5-trisphosphate receptor, the Na+/Ca2+ exchanger 1, and phospholipase Cß4 and Cß1. An increase of the free cytosolic Ca2+ concentration is proposed to be a major factor in susceptibility to Kawasaki disease and disease outcome, but only for polymorphisms in the genes encoding the inositol 1,4,5-trisphosphate 3-kinase C and the Na+/Ca2+ exchanger 1, the free cytosolic Ca2+ concentration was actually measured and shown to be increased. Excessive cytosolic Ca2+ signaling can result in hyperactive calcineurin in T cells with an overstimulated nuclear factor of activated T cells pathway, in hypersecretion of interleukin-1ß and tumor necrosis factor-α by monocytes/macrophages, in increased urotensin-2 signaling, and in an overactivation of vascular endothelial cells.  相似文献   

18.
Summary Using Ca2+- and K+-selective microelectrodes, the cytosolic free Ca2+ and K+ concentrations were measured in mouse fibroblastic L cells. When the extracellular Ca2+ concentration exceeded several micromoles, spontaneous oscillations of the intracellular free Ca2+ concentration were observed in the submicromolar ranges. During the Ca2+ oscillations, the membrane potential was found to oscillate concomitantly. The peak of cyclic increases in the free Ca2+ level coincided in time with the peak of periodic hyperpolarizations. Both oscillations were abolished by reducing the extracellular Ca2+ concentration down to 10–7 m or by applying a Ca2+ channel blocker, nifedipine (50 m). In the presence of 0.5mm quinine, an inhibitor of Ca2+-activated K+ channel, sizable Ca2+ oscillations still persisted, while the potential oscillations were markedly suppressed. Oscillations of the intracellular K+ concentration between about 145 and 140mm were often associated with the potential oscillations. The minimum phase of the K+ concentration was always 5 to 6 sec behind the peak hyperpolarization. Thus, it is concluded that the oscillation of membrane potential results from oscillatory increases in the intracellular Ca2+ level, which, in turn, periodically stimulate Ca2+-activated K+ channels.  相似文献   

19.
The physiological function and the molecular mechanisms of Ca2+-mediated signal transduction processes were studied in the unicellular green alga Eremosphaera viridis by different electrophysiological and microfluorimetric techniques. A sudden blockage of photosynthetic electron transport by darkening or inhibitors causes a transient hyperpolarization of the plasma membrane. For the alga this transient hyperpolarization seems to be an important mechanism to release monovalent ions and to drive the uptake of divalent cations. The transient hyperpolarization is due to the opening of K+ channels and is caused by a rapid transient elevation of the cytosolic free Ca2+ concentration ([Ca2+]cy spike). Different agonists like caffeine or InsP3 which are known to release Ca2+ from internal stores in animal cells, also cause a transient hyperpolarization and a [Ca2+]cy spike, similar to darkening. In Eremosphaera the transient hyperpolarization can be used as an indicator for [Ca2+]cy spikes. The InsP3 gated and the ryanodine/cADPR gated Ca2+ channels which obviously both mediate Ca2+ release from internal stores in Eremosphaera do not seem to be involved in the dark-induced [Ca2+]cy spikes. Besides single [Ca2+]cy spikes, the addition of Sr2+ (or caffeine in the absence of divalent cations) causes repetitive [Ca2+]cy spikes which may last hours and resemble [Ca2+]cy oscillations observed in excitable animal cells. These observations suggest that some principal molecular mechanisms causing single or repetitive [Ca2+]cy spikes are conserved from animal to plant cells.  相似文献   

20.
《Free radical research》2013,47(4-6):347-354
Exposure of hepatoma lclc7 cells to 2,3-drniethoxy-1.4-naphthoquinone (DMNQ) resulted in a sustained elevation of cytosolic Ca2+. DNA single strand breaks and cell killing. DNA single strand break formation was prevented when cells were preloaded with either of the intracellular Ca2+ chelators. Quin 2 or BAPTA, to buffer the increase in cytosolic Ca2+ concentration induced by the quinone. DMNQ caused marked NAD+ depletion which was prevented when cells were preincubated with 3-aminobenzamide. an inhibitor of nuclear poly-(ADP-ribose)-synthetase activity. or with either of the two Ca2+ chelators. However. 3-aminobenzamide did not protect the hepatoma cells from loss of viability. Our results indicate that quinone-induced DNA damage. NAD+ depletion and cell killing are mediated by a sustained elevation of cytosolic Ca2+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号