首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greater than 85% of the transport-impaired PiZ variant of human alpha 1-antitrypsin is retained within cells and subsequently degraded within a pre-Golgi nonlysosomal compartment that is apparently separate from the endoplasmic reticulum (ER) (Le, A., Graham, K. S., and Sifers, R. N. (1990) J. Biol. Chem. 265, 14001-14007). Despite this phenomenon, human patients and PiZ-bearing transgenic mice exhibit an accumulation of the undegraded protein as insoluble aggregates within distended cisternae of the hepatic ER (Carlson, J. A., Rogers, B. B., Sifers, R. N., Finegold, M. J., Clift, S. M., DeMayo, F. J., Bullock, D. W., and Woo, S. L. C. (1989) J. Clin. Invest. 83, 1183-1190). Immunoprecipitation of the PiZ variant from pulse-radiolabeled hepatocytes from the transgenic animals has demonstrated that a minute quantity of the newly synthesized mutant protein is apparently resistant to degradation and accumulates gradually within the particulate fraction of the cell. Although the steady-state level of the resident ER protein grp78/BiP is elevated in response to the accumulation of malfolded proteins within that subcellular compartment, this phenomenon is not elicited by the accumulation of the insoluble PiZ variant. These results indicate that neither the accumulation of this malfolded protein within the ER nor even the distention of that subcellular compartment is sufficient to cause the up-regulation of grp78/BiP levels. The interpretation of these results with regard to the factors that regulate the levels of grp78/BiP in the ER is discussed.  相似文献   

2.
The naturally occurring PiZ and Pi NullHong Kong variants of the human secretory protein alpha 1-antitrypsin (AAT) are retained within an early compartment of the secretory pathway. Intracellular degradation of these transport-impaired secretory proteins is initiated 30-45 min following their synthesis and translocation into the endoplasmic reticulum (ER). Interestingly, the overall rate of degradation of the retained mutant protein is significantly accelerated when all subcellular compartments are buffered at pH 6. In contrast, degradation is virtually abolished when intravesicular compartments are buffered at pH 8. However, despite this pH sensitivity neither lysosomotrophic amines, leupeptin, or leucine methyl ester have an apparent effect on the intracellular removal of the PiZ variant. The inability of a variety of inhibitors of ER-to-Golgi protein trafficking to hinder the degradative process suggests that degradation of the PiZ variant occurs prior to its delivery to the Golgi complex. To biochemically map the subcellular site of the degradation of the retained mutant protein, a recombinant truncated PiZ variant containing the tetrapeptide KDEL at its carboxyl terminus (a signal for sorting luminal proteins from a post-ER compartment back to the ER) was expressed in cells. Attachment of this ER-recycling signal to the recombinant protein prevented its intracellular degradation. These findings indicate that degradation of the PiZ variant occurs following its export from the ER.  相似文献   

3.
In the early secretory pathway, a distinct set of processing enzymes and family of lectins facilitate the folding and quality control of newly synthesized glycoproteins. In this regard, we recently identified a mechanism in which processing by endoplasmic reticulum mannosidase I, which attenuates the removal of glucose from asparagine-linked oligosaccharides, sorts terminally misfolded alpha(1)-antitrypsin for proteasome-mediated degradation in response to its abrogated physical dissociation from calnexin (Liu, Y., Choudhury, P., Cabral, C., and Sifers, R. N. (1999) J. Biol. Chem. 274, 5861-5867). In the present study, we examined the quality control of genetic variant PI Z, which undergoes inappropriate polymerization following biosynthesis. Here we show that in stably transfected hepatoma cells the additional processing of asparagine-linked oligosaccharides by endoplasmic reticulum mannosidase II partitions variant PI Z away from the conventional disposal mechanism in response to an arrested posttranslational interaction with calnexin. Intracellular disposal is accomplished by a nonproteasomal system that functions independently of cytosolic components but is sensitive to tyrosine phosphatase inhibition. The functional role of ER mannosidase II in glycoprotein quality control is discussed.  相似文献   

4.
To identify trans-acting factors involved in mRNA decay in the yeast Saccharomyces cerevisiae, we have begun to characterize conditional lethal mutants that affect mRNA steady-state levels. A screen of a collection of temperature-sensitive mutants identified ts352, a mutant that accumulated moderately stable and unstable mRNAs after a shift from 23 to 37 degrees C (M. Aebi, G. Kirchner, J.-Y. Chen, U. Vijayraghavan, A. Jacobson, N.C. Martin, and J. Abelson, J. Biol. Chem. 265:16216-16220, 1990). ts352 has a defect in the CCA1 gene, which codes for tRNA nucleotidyltransferase, the enzyme that adds 3' CCA termini to tRNAs (Aebi et al., J. Biol. Chem., 1990). In a shift to the nonpermissive temperature, ts352 (cca1-1) cells rapidly cease protein synthesis, reduce the rates of degradation of the CDC4, TCM1, and PAB1 mRNAs three- to fivefold, and increase the relative number of ribosomes associated with mRNAs and the overall size of polysomes. These results were analogous to those observed for cycloheximide-treated cells and are generally consistent with models that invoke a role for translational elongation in the process of mRNA turnover.  相似文献   

5.
The final steps in the synthesis of acetyl-CoA by CO dehydrogenase (CODH) have been studied by following the exchange reaction between CoA and the CoA moiety of acetyl-CoA. This reaction had been studied earlier (Pezacka, E., and Wood, H. G. (1986) J. Biol. Chem. 261, 1609-1615 and Ramer, W. E., Raybuck, S. A., Orme-Johnson, W. H., and Walsh, C. T. (1989) Biochemistry 28, 4675-4680). The CoA/acetyl-CoA exchange activity was determined at various controlled redox potentials and was found to be activated by a one-electron reduction with half-maximum activity occurring at -486 mV. There is approximately 2000-fold stimulation of the exchange by performing the reaction at -575 mV relative to the rate at -80 mV. Binding of CoA to CODH is not sensitive to the redox potential; therefore, the reductive activation affects some step other than association/dissociation of CoA. We propose that a metal center on CODH with a midpoint reduction potential of less than or equal to -486 mV is activated by a one-electron reduction to cleave the carbonyl-sulfur bond and/or bind the acetyl group of acetyl-CoA. Based on a comparison of the redox dependence of this reaction with that for methylation of CODH (Lu, W-P., Harder, S. R., and Ragsdale, S. W. (1990) J. Biol. Chem. 265, 3124-3133) and CO2 reduction and formation of the Ni-Fe-C EPR signal (Lindahl, P. A., Münck, E., and Ragsdale, S. W. (1990) J. Biol. Chem. 265, 3873-3879), we propose that the assembly of the acetyl group of acetyl-CoA, i.e. binding the methyl group of the methylated corrinoid/iron-sulfur protein, binding CO, and methyl migration to form the acetyl-CODH intermediate, occur at the novel Ni-Fe3-4-containing site in CODH. CO has two effects on the CoA/acetyl-CoA exchange: it activates the reaction due to its reductive capacity and its acts as a noncompetitive inhibitor. We also discovered that the CoA/acetyl-CoA exchange was inhibited by nitrous oxide via an oxidative mechanism. In the presence of a low-potential electron donor, CODH becomes a nitrous oxide reductase which catalytically converts N2O to N2. This study combined with earlier results (Lu, W-P., Harder, S. R., and Ragsdale, S. W. (1990) J. Biol. Chem. 265, 3124-3133) establishes that the two-subunit form of CODH is completely active in all reactions known to be catalyzed by CODH.  相似文献   

6.
Because retention of mutant alpha(1)-antitrypsin (alpha(1)-AT) Z in the endoplasmic reticulum (ER) is associated with liver disease in alpha(1)-AT-deficient individuals, the mechanism by which this aggregated glycoprotein is degraded has received considerable attention. In previous studies using stable transfected human fibroblast cell lines and a cell-free microsomal translocation system, we found evidence for involvement of the proteasome in degradation of alpha(1)-ATZ (Qu, D., Teckman, J. H., Omura, S., and Perlmutter, D. H. (1996) J. Biol. Chem. 271, 22791-22795). In more recent studies, Cabral et al. (Cabral, C. M., Choudhury, P., Liu, Y., and Sifers, R. N. (2000) J. Biol. Chem. 275, 25015-25022) found that degradation of alpha(1)-ATZ in a stable transfected murine hepatoma cell line was inhibited by tyrosine phosphatase inhibitors, but not by the proteasomal inhibitor lactacystin and concluded that the proteasome was only involved in ER degradation of alpha(1)-ATZ in nonhepatocytic cell types or in cell types with levels of alpha(1)-AT expression that are substantial lower than that which occurs in hepatocytes. To examine this important issue in further detail, in this study we established rat and murine hepatoma cell lines with constitutive and inducible expression of alpha(1)-ATZ. In each of these cell lines degradation of alpha(1)-ATZ was inhibited by lactacystin, MG132, epoxomicin, and clasto-lactacystin beta-lactone. Using the inducible expression system to regulate the relative level of alpha(1)-ATZ expression, we found that lactacystin had a similar inhibitory effect on degradation of alpha(1)-ATZ at high and low levels of alpha(1)-AT expression. Although there is substantial evidence that other mechanisms contribute to ER degradation of alpha(1)-ATZ, the data reported here indicate that the proteasome plays an important role in many cell types including hepatocytes.  相似文献   

7.
Mirabilis antiviral protein (MAP) is a rigid, heat-stable protein composed of 250 amino acids with an intramolecular disulfide bond. MAP inhibits the in vitro protein synthesis of rabbit reticulocyte with approximately one-thirtieth the activity of the ricin A chain, a homologous protein with no such bond (Habuka, N., Murakami, Y., Noma, M., Kudo, T., and Horikoshi, K. (1989) J. Biol. Chem. 264, 6629-6637; Habuka, N., Akiyama, K., Tsuge, H., Miyano, M., Matsumoto, T., and Noma, M. (1990) J. Biol. Chem. 265, 10988-10992). The bond is presumed to induce some structural perturbation that alters the mode of interaction with the substrate ribosome and thus lowers the activity. To confirm this hypothesis, a mutant MAP gene in which the codons of both cysteines were replaced by those of serines was constructed and expressed in Escherichia coli, and its product (C36/22OS) was purified. In a sodium dodecyl sulfate-polyacrylamide gel electrophoresis, C36/220S showed the same mobility as that of MAP reduced by 2-mercaptoethanol, whereas nonreduced MAP showed faster migration. The inhibitory activity of C36/220S was approximately 22 times higher than that of native MAP, that is the mutant had an IC50 of 0.16 nM for the protein synthesis of the rabbit reticulocyte system, whereas the native MAP had an IC50 of 3.5 nM. The results indicate that the activity of MAP is increased by the elimination of the disulfide bond, and this supports the hypothesis.  相似文献   

8.
R Urade  M Kito 《FEBS letters》1992,312(1):83-86
A protein (ER60) with sequence similarity to phosphoinositide-specific phospholipase C-alpha purified from rat liver endoplasmic reticulum (ER) degraded ER resident proteins and is really a protease [(1992) J. Biol. Chem. 265, 15152-15159]. Therefore, ER60 is called ER-60 protease. We now show that negatively charged phospholipids, phosphatidylinositol, phosphatidylinositol 4,5-bisphosphate and phosphatidylserine inhibit ER protein degradation by ER-60 protease. Phosphatidylcholine and phosphatidylethanolamine show no effect on the activity of ER-60 protease. With the use of protease inhibitors, ER-60 protease is shown to be a novel cysteine protease distinct from those of the cytosol and lysosomes.  相似文献   

9.
The steady-state level of the resident endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), is regulated, in part, by accelerated degradation in response to excess sterols or mevalonate. Previous studies of a chimeric protein (HM-Gal) composed of the membrane domain of HMGR fused to Escherichia coli beta-galactosidase, as a replacement of the normal HMGR cytosolic domain, have shown that the regulated degradation of this chimeric protein, HM-Gal, is identical to that of HMGR (Chun, K. T., Bar-Nun, S., and Simoni, R. D. (1990) J. Biol. Chem. 265, 22004-22010; Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). Since the cytosolic domain can be replaced with beta-galactosidase without effect on regulated degradation, it has been assumed that the cytosolic domain was not important to this process and also that the membrane domain of HMGR was both necessary and sufficient for regulated degradation. In contrast to our previous results with HM-Gal, we observed in this study that replacement of the cytosolic domain of HMGR with various heterologous proteins can have an effect on the regulated degradation, and the effect correlates with the oligomeric state of the replacement cytosolic protein. Chimeric proteins that are oligomeric in structure are relatively stable, and those that are monomeric are unstable. To test the hypothesis that the oligomeric state of the cytosolic domain of HMGR influences degradation, we use an "inducible" system for altering the oligomeric state of a protein in vivo. Using a chimeric protein that contains the membrane domain of HMGR fused to three copies of FK506-binding protein 12, we were able to induce oligomerization by addition of a "double-headed" FK506-like "dimerizer" drug (AP1510) and to monitor the degradation rate of both the monomeric form and the drug-induced oligomeric form of the protein. We show that this chimeric protein, HM-3FKBP, is unstable in the monomeric state and is stabilized by AP1510-induced oligomerization. We also examined the degradation rate of HMGR as a function of concentrations within the cell. HMGR is a functional dimer; therefore, its oligomeric state and, we predict, its degradation rate should be concentration-dependent. We observed that it is degraded more rapidly at lower concentrations.  相似文献   

10.
We previously described a novel molecular chaperone (designated p88) that participates in the assembly of murine class I histocompatibility molecules (Degen, E., and Williams, D. B. (1991) J. Cell Biol. 112, 1099-1115). Our findings suggest that p88 may either promote proper assembly of class I molecules or retain them, probably within the endoplasmic reticulum (ER), until assembly of the ternary complex of heavy chain, beta 2-microglobulin, and peptide ligand is complete. In this report, we compare p88 to calnexin, a calcium-binding 90-kDa phosphoprotein of the ER membrane (Wada, I., Rindress, D., Cameron, P. H., Ou, W.-J., Doherty, J.-J., II, Louvard, D., Bell, A.W., Dignard, D., Thomas, D. Y., and Bergeron, J. J. M. (1991) J. Biol. Chem. 266, 19599-19610). We show that p88 and calnexin share antigenic epitopes defined by a polyclonal anti-calnexin antiserum. Furthermore, both proteins were immunoprecipitated in association with an intracellularly retained variant of the class I H-2Kb molecule. Since p88 and calnexin were also indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, were resistant to digestion with endoglycosidase H, and exhibited virtually identical patterns of peptide fragments following digestion with either V8 protease or trypsin, we conclude that p88 and calnexin represent the same protein. The identification of the p88 chaperone as a phosphorylated, calcium-binding protein of the ER membrane suggests possible means whereby its interaction with class I molecules may be regulated.  相似文献   

11.
alpha 1-Antitrypsin (AAT) is a major hepatic secretory protein. The elevated synthesis of human AAT within hepatocytes of transgenic mice results in its accumulation within a subset of distended cisternae of the rough endoplasmic reticulum. The protein does not accumulate in large insoluble aggregates as is the case for the human PiZ AAT variant. Furthermore, the accumulated protein is not associated with immunoglobulin heavy chain binding protein. Transgenic animals exhibiting an elevated synthesis and subsequent intrahepatic accumulation of human AAT exhibit reduced serum levels of murine AAT as a result of its hindered secretion and accumulation within the rough endoplasmic reticulum. Interestingly, the secretion of murine transferrin and albumin which represent glycosylated and non-glycosylated hepatic secretory proteins, respectively, is unaffected. Overall, these results demonstrate that the elevated synthesis of human AAT can hinder the export of murine AAT from the hepatic rough endoplasmic reticulum in an apparently specific manner.  相似文献   

12.
Antitrypsin deficiency is a primary cause of juvenile liver disease, and it arises from expression of the "Z" variant of the alpha-1 protease inhibitor (A1Pi). Whereas A1Pi is secreted from the liver, A1PiZ is retrotranslocated from the endoplasmic reticulum (ER) and degraded by the proteasome, an event that may offset liver damage. To better define the mechanism of A1PiZ degradation, a yeast expression system was developed previously, and a gene, ADD66, was identified that facilitates A1PiZ turnover. We report here that ADD66 encodes an approximately 30-kDa soluble, cytosolic protein and that the chymotrypsin-like activity of the proteasome is reduced in add66Delta mutants. This reduction in activity may arise from the accumulation of 20S proteasome assembly intermediates or from qualitative differences in assembled proteasomes. Add66p also seems to be a proteasome substrate. Consistent with its role in ER-associated degradation (ERAD), synthetic interactions are observed between the genes encoding Add66p and Ire1p, a transducer of the unfolded protein response, and yeast deleted for both ADD66 and/or IRE1 accumulate polyubiquitinated proteins. These data identify Add66p as a proteasome assembly chaperone (PAC), and they provide the first link between PAC activity and ERAD.  相似文献   

13.
Attempts to change enzyme specificity by charge polarity reversal have so far met with little success, probably due to a destabilization of the resulting ion pair in an environment naturally optimized for the inverted pair. In the zinc metallopeptidase neutral endopeptidase-24.11 (EC 3.4.24.11), Arg102, involved in substrate binding, is probably located at the edge of the active site (Bateman, R.C., Jr., Kim, Y.-A., Slaughter, C., and Hersh, L.B. (1990) J. Biol. Chem. 265, 8365-8368; Beaumont, A., Le Moual, H., Boileau, G., Crine, P., and Roques, B.P. (1991) J. Biol. Chem. 266, 214-220). This environment may be favorable for polarity reversal, as in water the energies of reverse ion pairs would be identical. We show here that, while mutating Arg102 to Glu reduces the specificity of a C-terminally negatively charged substrate 16-fold, it increases that of a substrate with an optimally positioned positive charge 29-fold. The concept of charge polarity reversal can be extended to other zinc metallopeptidases, and the mutated enzyme could also have applications in the enantiomeric separation of unnatural amino acids.  相似文献   

14.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

15.
Acyloxyacyl hydrolase (AOAH) is an eukaryotic lipase that partially deacylates and detoxifies Gram-negative bacterial lipopolysaccharides and lipooligosaccharides (LPSs or LOSs, endotoxin) within intact cells and inflammatory fluids. In cell lysates or as purified enzyme, in contrast, detergent is required for AOAH to act on LPS or LOS (Erwin, A. L., and Munford, R. S. (1990) J. Biol. Chem. 265, 16444-16449 and Katz, S. S., Weinrauch, Y., Munford, R. S., Elsbach, P., and Weiss, J. (1999) J. Biol. Chem. 274, 36579-36584). We speculated that the sequential interactions of endotoxin (E) with endotoxin-binding proteins (lipopolysaccharide-binding protein (LBP), CD14, and MD-2) might produce changes in endotoxin presentation that would allow AOAH greater access to its substrate, lipid A. To test this hypothesis, we measured the activity of purified AOAH against isolated, metabolically labeled meningococcal LOS and Escherichia coli LPS that were presented either as aggregates (LOSagg or LPSagg)+/-LBP or as monomeric protein (sCD14 or MD-2)-endotoxin complexes. Up to 100-fold differences in the efficiency of endotoxin deacylation by AOAH were observed, with the following rank order of susceptibility to AOAH: E:sCD14>or=endotoxin aggregates (Eagg):LBP (molar ratio of E/LBP 100:1)>Eagg, Eagg:LBP (E/LBP approximately 1, mol/mol), or E:MD-2. AOAH treatment of LOS-sCD14 produced partially deacylated LOS still complexed with sCD14. The underacylated LOS complexed to sCD14 transferred to MD-2 and thus formed a complex capable of preventing TLR4 activation. These findings strongly suggest that LBP- and CD14-dependent extraction and transfer of endotoxin monomers are accompanied by increased exposure of fatty acyl chains within lipid A and that the acyl chains are then sequestered when LOS binds MD-2. The susceptibility of the monomeric endotoxin-CD14 complex to AOAH may help constrain endotoxin-induced TLR4 activation when endotoxin and membrane CD14 are present in excess of MD-2/TLR-4.  相似文献   

16.
The Z variant of human alpha-1 proteinase inhibitor (A1PiZ) is a substrate for endoplasmic reticulum-associated protein degradation (ERAD). To identify genes required for the degradation of this protein, A1PiZ degradation-deficient (add) yeast mutants were isolated. The defect in one of these mutants, add3, was complemented by VPS30/ATG6, a gene that encodes a component of two phosphatidylinositol 3-kinase (PtdIns 3-kinase) complexes: complex I is required for autophagy, whereas complex II is required for the carboxypeptidase Y (CPY)-to-vacuole pathway. We found that upon overexpression of A1PiZ, both PtdIns 3-kinase complexes were required for delivery of the excess A1PiZ to the vacuole. When the CPY-to-vacuole pathway was compromised, A1PiZ was secreted; however, disruption of autophagy led to an increase in aggregated A1PiZ rather than secretion. These results suggest that excess soluble A1PiZ transits the secretion pathway to the trans-Golgi network and is selectively targeted to the vacuole via the CPY-to-vacuole sorting pathway, but excess A1PiZ that forms aggregates in the endoplasmic reticulum is targeted to the vacuole via autophagy. These findings illustrate the complex nature of protein quality control in the secretion pathway and reveal multiple sites that recognize and sort both soluble and aggregated forms of aberrant or misfolded proteins.  相似文献   

17.
LADII (leukocyte adhesion deficiency type II)/CDGIIc (congenital disorder of glycosylation type IIc) is a rare autosomal recessive disease characterized by leukocyte adhesion deficiency as well as severe neurological and developmental abnormalities. It is caused by mutations in the Golgi GDP-fucose transporter, resulting in a reduction of fucosylated antigens on the cell surface. A recent study using fibroblasts from LADII/CDGIIc patients suggested that although terminal fucosylation of N-glycans is reduced severely, protein O-fucosylation is generally unaffected (Sturla, L., Rampal, R., Haltiwanger, R. S., Fruscione, F., Etzioni, A., and Tonetti, M. (2003) J. Biol. Chem. 278, 26727-26733). A potential explanation for this phenomenon is that enzymes adding O-fucose to proteins localize to cell organelles other than the Golgi apparatus. In this study, we investigated the subcellular localization of protein O-fucosyltransferase 1 (O-FucT-1), which is responsible for adding O-fucose to epidermal growth factor-like repeats. Our analysis reveals that, unlike all other known fucosyltransferases, O-FucT-1 is a soluble protein that localizes to the endoplasmic reticulum (ER). In addition, it appears that O-FucT-1 is retained in the ER by a KDEL-like sequence at its C terminus. Our results also suggest that enzymatic addition of O-fucose to proteins occurs in the ER, suggesting that a novel, ER-localized GDP-fucose transporter may exist. The fact that O-FucT-1 recognizes properly folded epidermal growth factor-like repeats, together with this unique localization, suggests that it may play a role in quality control.  相似文献   

18.
We have previously shown that only a fraction of the newly synthesized human delta opioid receptors is able to leave the endoplasmic reticulum (ER) and reach the cell surface (Pet?j?-Repo, U. E, Hogue, M., Laperrière, A., Walker, P., and Bouvier, M. (2000) J. Biol. Chem. 275, 13727-13736). In the present study, we investigated the fate of those receptors that are retained intracellularly. Pulse-chase experiments revealed that the disappearance of the receptor precursor form (M(r) 45,000) and of two smaller species (M(r) 42,000 and 39,000) is inhibited by the proteasome blocker, lactacystin. The treatment also promoted accumulation of the mature receptor form (M(r) 55,000), indicating that the ER quality control actively routes a significant proportion of rescuable receptors for proteasome degradation. In addition, degradation intermediates that included full-length deglycosylated (M(r) 39,000) and ubiquitinated forms of the receptor were found to accumulate in the cytosol upon inhibition of proteasome function. Finally, coimmunoprecipitation experiments with the beta-subunit of the Sec61 translocon complex revealed that the receptor precursor and its deglycosylated degradation intermediates interact with the translocon. Taken together, these results support a model in which misfolded or incompletely folded receptors are transported to the cytoplasmic side of the ER membrane via the Sec61 translocon, deglycosylated and conjugated with ubiquitin prior to degradation by the cytoplasmic 26 S proteasomes.  相似文献   

19.
Saccharomyces cerevisiae mutants deficient in degradation of alpha-1-proteinase inhibitor Z (A1PiZ) have been isolated and genetically characterized. Wild-type yeast expressing A1PiZ synthesize an ER form of this protein that is rapidly degraded by an intracellular proteolytic process known as ER-associated protein degradation (ERAD). The mutant strains were identified after treatment with EMS using a colony blot immunoassay to detect colonies that accumulated high levels of A1PiZ. A total of 120,000 colonies were screened and 30 putative mutants were identified. The level of A1PiZ accumulation in these mutants, measured by ELISA, ranged from two to 11 times that of A1PiZ in the parent strain. Further studies demonstrated that the increased levels of A1PiZ in most of the mutant strains was not the result of defective secretion or elevated A1PiZ mRNA. Pulse chase experiments indicated that A1PiZ was stabilized in several strains, evidence that these mutants are defective in ER-associated protein degradation. Genetic analyses revealed that most of the mutations were recessive, ~30% of the mutants characterized conformed to simple Mendelian inheritance, and at least seven complementation groups were identified.  相似文献   

20.
When unliganded glucocorticoid receptor that has been stripped free of associated proteins is incubated with rabbit reticulocyte lysate, the receptor becomes associated with the 70- and 90-kDa heat shock proteins (hsp70 and hsp90), and the untransformed state of the receptor is functionally reconstituted [Scherrer, L. C., Dalman, F. C., Massa, E., Meshinchi, S., & Pratt, W. B. (1990) J. Biol. Chem. 265, 21397-21400]. Recently, an hsp70-containing protein complex (200-250 kDa) purified from rabbit reticulocyte lysate was shown to maintain a fusion protein bearing the mitochondrial matrix-targeting signal in a state that is competent for mitochondrial import [Sheffield, W. P., Shore, G. C., & Randall, S. K. (1990) J. Biol. Chem. 265, 11069-11076]. In this work, we show that this partially purified mitochondrial import-competent fraction contains both hsp90 and hsp70. When the purified fraction is immunoadsorbed with a monoclonal antibody specific for hsp90, a significant portion of the hsp70 is co-immunoadsorbed, suggesting that hsp90 and hsp70 are present together as a complex. The partially purified fraction maintains a hybrid precursor protein containing the mitochondrial matrix-targeting signal of rat pre-ornithine carbamyl transferase in an import-competent state. Incubation of immunopurified glucocorticoid receptor with this fraction of reticulocyte lysate results in ATP-dependent association of the receptor with both hsp70 and hsp90, and the resulting complexes are functional as assessed by return of the receptor to the high-affinity steroid binding conformation. The glucocorticoid receptor hetero-complex reconstituting activity of the lysate fraction is low relative to its mitochondrial import activity. Importantly, however, this is the first demonstration of the functional and structural reconstitution of the untransformed state of any steroid receptor utilizing a partially purified system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号