首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.  相似文献   

2.
There are a number of controversies surrounding both biomass estimation and carbon balance in tropical forests. Here we use long-term (from 1978 through 2000) data from five 0.5-ha permanent sample plots (PSPs) within a large tract of relatively undisturbed Atlantic moist forest in southeastern Brazil to quantify the biomass increment (MI), and change in total stand biomass (Mstand), from mortality, recruitment, and growth data for trees 10 cm diameter at breast height (DBH). Despite receiving an average of only 1,200 mm annual precipitation, total forests biomass (334.5±11.3 Mg ha–1) was comparable to moist tropical forests with much greater precipitation. Over this relatively long-term study, forest biomass experienced rapid declines associated with El Niño events, followed by gradual biomass accumulation. Over short time intervals that overlook extreme events, these dynamics can be misinterpreted as net biomass accumulation. However for the 22 years of this study, there was a small reduction in forest biomass, averaging –1.2 Mg ha–1 year–1 (±3.1). Strong climatic disturbances can severely reduce forest biomass, and if the frequency and intensity of these events increases beyond historical averages, these changing disturbance regimes have the capacity to significantly reduce forest biomass, resulting in a net source of carbon to the atmosphere.  相似文献   

3.
The form of tropical trees was studied with reference to the production structure of the component individuals of a tropical rain forest stand in Sebulu, East Kalimantan in Indonesian Borneo, since the production structure as a physical or bio-economical basis of tree form still remains obscure in tropical rain forests. The pipe model theory successfully explained the crown shapes of different trees, and its parameter, designated as specific pipe length, suggested an increase in the cost of leaf mass growth with an increase in crown size. A mathematical model consisting of exponential functions of aboveground height was applied for describing stem form, and its properties were examined through changes in its coefficients and by adopting an assumption of the geometrical similarity of individual stem form as a criterion for comparing differences in stem form among individual trees. Furthermore, the cost of buttersses was discussed using the relation between bole- and buttress weight calculated from the mathematical model.  相似文献   

4.
Summary Bud break, shoot growth and flowering of trees involve cell expansion, known to be inhibited by moderate water deficits. In apparent contradiction to physiological theory, many trees flower or exchange leaves during the 6 month-long, severe dry season in the tropical dry forest of Guanacaste, Costa Rica. To explore this paradox, changes in tree water status during the dry season were monitored in numerous trees. Water potential of stem tissues (stem) was obtained by a modification of the pressure chamber technique, in which xylem tension was released by cutting defoliated branch samples at both ends. During the early dry season twigs bearing old, senescent leaves generally had a low leaf water potential (leaf), while stem varied with water availability. At dry sites, stem was very low in hardwood trees (<–4 MPa), but near saturation (>–0.2 MPa) in lightwood trees storing water with osmotic potentials between –0.8 and –2.1 MPa. At moist sites trees bearing old leaves rehydrated during drought; their stem increased from low values (<–3 MPa) to near saturation, resulting in differences of 3–4 MPa between stem and leaf. Indirect evidence indicates that rehydration resulted from osmotic adjustment of stem tissues and improved water availability due to extension of roots into moist subsoil layers. In confirmation of physiological theory, elimination of xylem tension by leaf shedding and establishment of a high solute content and high stem were prerequisites for flowering and bud break during drought.  相似文献   

5.
以广西弄岗北热带喀斯特季节性雨林15 hm2森林动态监测样地为对象,结合2011年和2016年两次调查数据,分析5年间样地树木死亡个体的数量、径级结构和空间格局特征等。结果显示:2011年至2016年,样地有86.5%的树种出现了个体死亡的现象,死亡个体占个体总数的14.4%;死亡个体的聚集程度随空间尺度的增大而逐渐减弱;小径级个体死亡与周边邻体和环境的关联性较大;竞争是影响弄岗北热带喀斯特季节性云林树木死亡的主要因素。综合来看,北热带喀斯特季节性雨林内树木死亡并非是一个完全随机的过程,而是树木本身特征和生物与非生物环境共同作用的结果。  相似文献   

6.
The spatial distribution of basidiocarps provides much information on the dispersal abilities, habitat preferences, and inter- and intraspecific interactions of aphyllophoraceous fungi. To reveal the spatial distribution and resource utilization patterns of aphyllophoraceous fungi in Malaysia, we conducted field observations in a primary forest in 2006 and analyzed the relationships between the abundance of eight dominant fungal species and various environmental factors. The topographical characteristics were significantly patchily distributed at the 100-m scale, whereas woody debris and most fungal species were distributed randomly. Although the dominant fungal species differed among the decay classes and diameters of the woody debris, the abundance of a few dominant species was significantly correlated with environmental factors. Although the latter factors might affect the spatial distribution of these fungi, the effects appear to be so small that they would not create an aggregated distribution at a few 100-m scales.  相似文献   

7.
Forest decline and increasing tree mortality are of global concern and the identification of the causes is necessary to develop preventive measures. Global warming is an emerging factor responsible for the increasing tree mortality in drought-prone ecosystems. In the southwestern Iberian Peninsula, Mediterranean holm oak open woodlands currently undergo large-scale population-level tree die-off. In this region, temperature and aridity have increased during recent decades, but the possible role of climate change in the current oak mortality has not been investigated.To assess the role of climate change in oak die-off in managed open woodlands in southwestern Spain, we analyzed climate change-related signals in century-long tree ring chronologies of dead holm oaks. We examined the high/low-frequency variability in growth and the relationship between growth and climate.Similar to other Mediterranean forests, growth was favored by precipitation from autumn of the year prior to ring formation to spring of the year of ring formation, whereas high temperatures during spring limited growth. Since the 1970s, the intensity of the high-frequency response to water availability increased simultaneously with temperature and aridity. The growth trends matched those of climatic changes. Growth suppressions occurred during droughts in the 1970s, 1980s and 1990s. Widespread stand-level, age-independent mortality occurred since 2005 and affected trees that cannot be considered old for the species standards.The close relationship between growth and climate indicate that climate change strongly controlled the growth patterns. This suggests that harsher climatic conditions, especially increased aridity, affected the tree performance and could have played a significant role in the mortality process. Climate change may have exacerbated or predisposed trees to the impact of other factors (e.g. intense management and pathogens). These observations could suggest a similar future increase in oak mortality which may occur in more northern oak open woodlands if aridity further increases.  相似文献   

8.
Although soil carbon dioxide (CO2) efflux from tropical forests may play an important role in global carbon (C) balance, our knowledge of the fluctuations and factors controlling soil CO2 efflux in the Asian tropics is still poor. This study characterizes the temporal and spatial variability in soil CO2 efflux in relation to temperature/moisture content and estimates annual efflux from the forest floor in an aseasonal intact tropical rainforest in Sarawak, Malaysia. Soil CO2 efflux varied widely in space; the range of variation averaged 17.4 μmol m−2 s−1 in total. While most CO2 flux rates were under 10 μmol m−2 s−1, exceptionally high fluxes were observed sporadically at several sampling points. Semivariogram analysis revealed little spatial dependence in soil CO2 efflux. Temperature explained nearly half of the spatial heterogeneity, but the effect varied with time. Seasonal variation in CO2 efflux had no fixed pattern, but was significantly correlated with soil moisture content. The correlation coefficient with soil moisture content (SMC) at 30 and 60 cm depth was higher than at 10 cm depths. The annual soil CO2 efflux, estimated from the relationship between CO2 efflux and SMC at 30 cm depth, was 165 mol m−2 year−1 (1,986 g C m−2 year−1). As this area is known to suffer severe drought every 4–5 years caused by the El Nino-Southern Oscillation, the results suggest that an unpredictable dry period might affect soil CO2 efflux, leading an annual variation in soil C balance.  相似文献   

9.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   

10.
Further analysis of tropical rainforest dynamics and stability in relation to stem mortality has been conducted using a microcomputer model developed in a previous study (Oikawa, 1985). By simulation experiments covering a period of 100 years, the effects of changing stem mortality (δc) upon a tropical rainforest were investigated. Increasing stem mortality ranging from a standard value (3%yr−1) to a 4-fold value (12%yr−1) brings about decreases in stem biomass and thus total living biomass, and a contrasting increase of stem litterfall flux at the steady state of the forest ecosystem. At the same time, the decreased stem biomass at the steady state is predicted to result in increases of gross production (P g) and net production (P n), and an improvement in production efficiency of the model rainforest expressed as theP n/Pg ratio. similar simulation experiments predict that the improved production efficiency in the forest with a 4-fold stem mortality is able to enhance tolerance to less productive environments such as a prolonged dry season or a reduced incident light flux density. On the other hand, the standard stem mortality (δc=3%yr−1), which was estimated as a probable value for the Pasoh forest, West Malaysia, is considered to approximate the lower threshold necessary for attaining forest stability. Based on the results obtained, the significance of δc for the dynamics and stability of a tropical rainforest ecosystem is discussed in relation to the competition and tolerance of trees. In addition, the effectiveness of the simulation approach adopted here is emphasized. Titles are tentative translations by the author for original titles in Japanese.  相似文献   

11.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

12.
We examined the photosynthetic acclimation of three tropical species of Miconia to canopy openings in a Costa Rican rainforest. The response of photosynthesis to canopy opening was very similar in Miconia affinis, M. gracilis, and M. nervosa, despite differences in growth form (trees and shrubs) and local distributions of plants (understory and gap). Four months after the canopy was opened by a treefall, photosynthetic capacity in all three species had approximately doubled from closed canopy levels. There were no obvious signs of high light damage after treefall but acclimation to the gap environment was not immediate. Two weeks after treefall, Amax, stomatal conductance, apprarent quantum efficiency, and dark respiration rates had not changed significantly from understory values. The production of new leaves appears to be an important component of light acclimation in these species. The only variables to differ significantly among species were stomatal conductance at Amax and the light level at which assimilation was saturated. M. affinis had a higher stomatal conductance which may reduce its water use efficiency in gap environments. Photosynthesis in the more shade-tolerant M. gracilis saturated at lower light levels than in the other two species. Individual plant light environments were assessed after treefall with canopy photography but they explained only a small fraction of plant variation in most measures of photosynthesis and growth. In conclusion, we speculate that species differences in local distribution and in light requirements for reproduction may be more strongly related to species differences in carbon allocation than in carbon assimilation.  相似文献   

13.
14.
Tanaka  Hiroshi O.  Inui  Yoko  Itioka  Takao 《Ecological Research》2009,24(6):1393-1397
Ants are believed to regulate herbivorous insects in the canopy of tropical rainforests, but few studies have empirically investigated the anti-herbivore effects of the ants there. We examined the anti-herbivore effects of the ant species Crematogaster difformis, which territorializes a large area of the crown of emergent canopy trees and inhabits the myrmecophytic epiphytes, Lecanopteris sp. and Platycerium sp., which grow in the crown, by performing an ant-exclusion experiment in the field. The average proportion of leaf area loss, the proportion of damaged leaves, and the proportion of leaves with ≥50% leaf area loss were all significantly higher on experimentally ant-excluded branches than on ant-attended branches at 3 months from the beginning of the ant-exclusion treatment. These results suggest that C. difformis regulates not only herbivorous insects that potentially feed on its host epiphytes but also those that could feed on leaves of emergent canopy trees that harbor the epiphytes.  相似文献   

15.
Seasonally dry tropical forests are an important global climate regulator and represent one of main drivers of carbon sink dynamics. However, projections of climate change suggest future productivity losses and negative impacts on forest functioning. Understanding the interaction between climate variability and tree growth responses between species with different growth strategies represents a crucial challenge to forecast ecosystem functioning in the future. Here we used tree ring chronology to evaluate changes in growth and climate sensitivity of two tropical tree species that co-occur in a seasonally dry tropical forest in Brazil: Cedrela odorata and Ceiba glaziovii. Using Pearson correlations and linear regressions we explored how growth variability is correlated with local (precipitation, temperature) and global (ocean temperature and El Niño Southern Oscillation - ENSO) climatic factors. Tree growth was closely related with precipitation in C. odorata (r = 0.59) and C. glaziovii (0.24). Differences were found at monthly level, which C. odorata showing greater sensitivity in the beginning of rainy season. The South Atlantic Temperature was positively correlated with C. odorata, while ENSO was negatively correlated. Our results showed a dominant effect of precipitation on tree growth and suggest that are different growth strategies among species, which C. odorata being the most sensitive to drought and C. glaziovii more adapted with parenchyma in trunk. Therefore, C. odorata is probably more vulnerable to the deleterious effects of future climate change than C. glaziovii. Our findings highlight the importance of understanding the climate sensitivity of different seasonally dry tropical forest species, which is critical to predicting carbon dynamics in tropical regions. These also reveal that differences in sensitivity must be considered when prioritizing conservation measures for seasonally dry tropical forests.  相似文献   

16.
Forest under low rainfall (averaging 745 mm yr-1) on the Shai Hills in S.E. Ghana has redeveloped following cessation of farming in the 1890s. Forest stature is low, with a canopy at about 11 m, principally of three species, Diospyros abyssinica, D. mespiliformis and Millettia thonningii. Drypetes parvifolia and Vepris heterophylla are common understorey trees. Twelve species of woody liane were recorded. Species of thicket vegetation in the area were also present at low density. Most species are evergreen.Tree mortality averaged 2.3% yr-1 and exceeded recruitment (1.5% yr-1). Differences between species in mortality and recruitment were pronounced: canopy species showed a small decline in density; understorey species increased markedly and the thicket species declined. Seed production was very variable, but seedling establishment was very poor for all species. Seedling mortality was high (11% yr-1) especially for small seedlings. These population trends probably represent the latter stages of succession of forest regrowth after farming about 100 years ago.Compared with tropical rain forest, Shai Hills forest has similar relative tree diameter growth (1–3.5% yr-1), mortality and recruitment rates, and small-litter fall (5.52 t ha-1 yr-1).Shai Hills forest differs from rain forest by its short stature, relatively few (evergreen) tree species, poor regeneration from seed, high soil nutrient status and low rainfall. Similar forests have been reported in east Africa and in parts of New Guinea.Abbreviations dbh diameter at breast height (1.3 m) - gbh girth at breast height died May 1984  相似文献   

17.
Invertebrate predators and parasitoids are among the most important natural enemies of insect herbivores. Yet, the strength of natural enemy pressure along an altitudinal gradient and interactions between the groups of natural enemies (such as predation on parasitized prey) are not well known. Various methods are used to reveal the mortality factors of herbivores. Predation pressure is usually assessed through exposure of artificial prey. However, this method cannot provide information about the attacks of parasitoids, or their eventual interactions with predators. Furthermore, artificial or dead prey might not attract predators because they do not show expected host behavior, and this method mostly cannot distinguish between predation and scavenging. For the first time in a tropical rainforest, we quantified elevational contrast in mortality factors using exposure of live caterpillars. We exposed a total of 800 live caterpillars of Talanga excelsalis moresbyensis Strand (Lepidoptera: Crambidae) on saplings of Ficus copiosa Steud. (Moraceae) at two elevations in primary tropical rain forest in Papua New Guinea (200 and 1 200 m a.s.l.). We exposed the caterpillars in two treatments: exposed to and protected from invertebrate predators and parasitoids. Disappearance of caterpillars was significantly higher in the exposed treatment. Furthermore, caterpillar disappearance was significantly higher in lowlands than in highlands (43 vs. 12%). We consider the vast majority of the disappearance to be due to predation, as migration of the caterpillars from the focal trees was not observed (except one caterpillar). This estimate of invertebrate predation rate corresponds with studies which used artificial caterpillar models. No significant difference in parasitism rate between the two elevations was observed (12 vs. 13%). The combination of the disappearance and parasitism rate patterns means that larval parasitoids face stronger pressure from invertebrate predators through higher predation of their hosts in the lowlands than in the highlands.  相似文献   

18.
We examine the effect of selective timber extraction, and corresponding forest canopy loss, on arboreal dung beetles in the tropical rainforests of Sabah, Malaysian Borneo. Changes in vertical distribution of beetles are measured through differences in the abundance of beetles in ground-based pitfall traps in primary, logged and plantation forest. Previous research has demonstrated that arboreal dung beetles are not generally collected in pitfall traps in primary forest, but are present in large numbers above the ground in canopy vegetation: the presence of arboreal beetles in pitfalls in areas of reduced or modified canopy cover may therefore reflect a response to the absence or modification of their usual habitat, and the proliferation of these beetles nearer to the ground. In this paper, statistically significant differences are found in the abundance of beetles in ground pitfall traps from logged forest compared to primary forest. Results show that virtually no arboreal dung beetles are recorded in primary forest traps, with an increased abundance of arboreal dung beetles in traps from logged and plantation forest, with 1.72% of the total number of arboreal beetles recorded from primary forest, 22.32% from logged forest, and 75.96% from plantation forest. The presence of arboreal dung beetles in plantations demonstrates that arboreal dung beetles can survive outside their normal habitat, and we relate these observations to adaptations to upper rainforest canopy conditions, and proliferation of these microclimatic conditions in man-made habitats. Results are also discussed in terms of their relevance to the measurement of species richness and diversity in logged and other derived ecosystems, where mixing of the ground-based and arboreal faunas occurs.  相似文献   

19.
Southeast Asia has the highest rate of tropical rainforest deforestation worldwide, and large deforested areas have been replaced ultimately by the highly invasive grass Imperata cylindrica. However, information on the carbon (C) budget with such land transition is very scarce. This study presents the dynamics of soil C following rainforest destruction and the subsequent establishment of Imperata grassland in the lowland humid tropics of Indonesian Borneo using stable C isotopes. To evaluate the relative contribution of organic matter originating from primary forest (C3) and grasslands (C4), we compared soil C stock and natural 13C abundance from six sites to a depth of 100 cm using samples with a wide range of soil textures. Twelve years after the first soil sampling in the grasslands, we re‐sampled to examine temporal changes in soil organic matter. The grassland topsoil (0–5 cm) is an active layer with rapid decomposition and incorporation of fresh C (mean residence time: 7.5 year) and a substantial proportion of the stable C pool (37%). The decline in forest‐derived C was slight, even at 5–10 cm depths, and subsoil (20–100 cm depth) forest‐derived C did not change along the forest‐to‐grassland chronosequence. Grassland‐derived C stock increased significantly in the subsurface and subsoils (5–100 cm). Simulation indicated that total soil C stock (0–100 cm) increased by 18.6 Mg ha?1 from initial primary forest (58.0 Mg ha?1) to a new equilibrium state of the grassland (76.6 Mg ha?1) after 30–50 years of grassland establishment. This research indicates that the soil did not function as a CO2 source when the deforested area was replaced by Imperata grassland on the Ultisols of the Asian humid tropics. Instead, increased soil C stocks offset CO2 emissions, with the C offset accounting for 6.6–7.4% of the loss of biomass C stock.  相似文献   

20.
Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号